Skip to main content

Genomic-Assisted Breeding in Oilseed Brassicas

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 3

Abstract

The oilseed brassicas, world’s third most important source of vegetable oil with recently gained interest as a source of biodiesel, occupy a prominent place in the world’s agrarian economy and are grown in more than 50 countries across the globe. Improvement in nutritional profiling of Brassica oil and its defatted oil cake has vastly spread the production domain of rapeseed-mustard in the world. Consistent breeding efforts led to conversion of almost all Brassica napus into present-day canola-quality cultivars, and intensification of this quality trait in Brassica juncea too is leading its expansion in drier and low rainfall areas of the world. The good agronomic performance and the energetic balance of Brassica carinata in semiarid temperate climate and under low cropping system have generated a new interest in this species as an oilseed crop. Though, a young species with a short domestication history, Brassica napus has gained a huge attention of researchers and consequently, has witnessed a steady progress during last four decades. The conventional breeding as well as modern biotechnological tools has led to the improvement of various agronomically important quantitative and qualitative characters in oilseed brassicas.

Arabidopsis, the closest relatives of Brassica species, besides evolutionary divergence, offers great potential for genetic and physical comparative mapping to identify genomic regions harboring genes of interest and to accelerate marker development, map-based gene cloning, and candidate gene identification in Brassica crops. Multinational Brassica Genome Project, initiated in January 2003, has given great impetus to the Brassica genomic research, and thereafter, availability of genome sequence information has allowed the construction of high-resolution genetic maps, delineating QTLs underlying complex quantitative economic traits and their conversion in perfect markers, and to tag genes of commercial interest. In spite of the difficulties in QTL localization in these polyploid crops, trait-associated genetic markers have been identified for yield component traits, fatty acid composition controlling domains and for a couple of biotic and abiotic stresses for applications in Brassica molecular breeding. Though, consistent improvement for productivity, oil content, oil quality and tolerance to biotic and abiotic stresses in Oilseed brassicas has been achieved but synchronous maturity, stable and practically viable male sterility systems for hybrid development, shattering resistance in B. napus, defined and efficient DH production systems, and harnessing the potential as biodiesel crops are upcoming areas of research through combination of traditional and genomic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri A, Deepak P, Gupta K (2004) Biotechnology in quality improvement of oilseed brassicas. In: Srivastava PS, Alka N, Srivastava S (eds) Plant biotechnology and molecular markers. Springer, Netherlands, pp 144–155

    Google Scholar 

  • Akhatar J, Banga SS (2015) Genome-wide association mapping for grain yield components and root traits in Brassica juncea (L.) Czern&Coss. Mol Breed 35(1):48

    Article  CAS  Google Scholar 

  • Akhov LL, Ashe PP, Tan YTY, Datla RDR, Selvaraj GSG (2009) Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany 87:616–625. https://doi.org/10.1139/B09-036

    Article  CAS  Google Scholar 

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54. https://doi.org/10.1186/1471-2229-10-54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:387–391

    Article  Google Scholar 

  • Anonymous (2016) Package of practice for crops of Punjab, Rabi 2015–16, PAU Ludhiana. Pp 44

    Google Scholar 

  • Auger B, Baron C, Lucas MO, Vautrin S, Bergès H, Chalhoub B et al (2009) Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta 230:1167–1183. https://doi.org/10.1007/s00425-009-1017-0

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Banga SS (1993) Heterosis and its utilization. In: Labana KS, Banga SK (eds) Breeding oilseed brassicas. Monogr Theor Appl Genet, vol 19. Springer, Berlin/Heidelberg/New York, pp 21–43

    Chapter  Google Scholar 

  • Banga SS, Banga SK (2009) Crop improvement strategies in rapeseed-mustard. In: Hegde DM (ed) Vegetable oil scenario: approaches to meet the growing demands. ISOR, Hyderabad, pp 13–35

    Google Scholar 

  • Banga SS, Banga SK, Labana KS (1983) Nucleocytoplasmic interactions in Brassica. Proceedings of the 6th International Rapeseed Conference, Paris, France, pp 602–606

    Google Scholar 

  • Banga SS, Labana KS, Banga SK, Sandha GS, Gupta TR (1995) PGSH 51: the first hybrid of gobhi sarson. PAU J Res 32:242

    Article  Google Scholar 

  • Banuelos GS, Dhillon KS, Banga SS (2013) Oilseed brassicas. In: Singh BP (ed) Biofuel crops: production, physiology and genetics. CABI, Wallingford, pp 339–368

    Chapter  Google Scholar 

  • Barret P, Delourme R, Foisset N, Renard M (1998) Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. TAG Theor Appl Genet 97(5-6):828–833

    Article  CAS  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker H, Snowdon R (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L). TheorAppl Genet 120:271–281

    Article  CAS  Google Scholar 

  • Bentsink L, Yuan K, Koornneef M, Vreugdenhil D (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Genet 106:1234–1243

    Article  CAS  PubMed  Google Scholar 

  • Borhan MH, Brose E, Beynon JL, Holub EB (2001) White resistant (Albugo candida) resistance loci on three Arabidopsis chromosomes are closely linked to downy mildew (Peronospora parasitica) resistant loci. Mol Plant Pathol 2:87–95

    Article  CAS  PubMed  Google Scholar 

  • Borhan M, Gunn N, Cooper A, Gulden S, Tör M, Rimmer SR, Holub EB (2008) WRR4 encodes a TIR-NB-LRR protein that confers broad-Spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Mol Plant-Microbe Interact 21:757–768

    Article  CAS  PubMed  Google Scholar 

  • Bouis H (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35(2):262–272

    Article  CAS  PubMed  Google Scholar 

  • Burton W, Salisbury P, Potts D (2003, September) The potential of canola quality Brassica juncea as an oilseed crop for Australia. Proceeding of the 11th international rapeseed congress 1:5–7

    Google Scholar 

  • Busch L, Gunter V, Mentele T et al (1994) Socializing nature – technoscience and the transformation of rapeseed into canola. Crop Sci 34:607–614

    Article  Google Scholar 

  • Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genet 13(1):105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cardone M, Mazzoncini M, Menini S, Rocco V, Senatore A, Seggiani M, Vitolo S (2003) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 25:623–636

    Article  CAS  Google Scholar 

  • Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL et al (2009) TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genomics 281:109–123. https://doi.org/10.1007/s00438-008-0399-1

    Article  CAS  PubMed  Google Scholar 

  • Chai AL, Xie XW, Shi YX, Li BJ (2014) Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can J Plant Pathol 36:142–153

    Article  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M (2014a) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub B et al (2014b) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  PubMed  Google Scholar 

  • Chauhan JS, Singh KH, Singh VV, Kumar S (2011) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sc 81(12):1093–1109

    Google Scholar 

  • Chen BY, Heneen WK (1992) Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica 59(2–3):157–163

    Article  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci 94(7):3442–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. TAG 115:849–858

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang Y, Yao J, Ma C, Tu J, Tingdong F (2011) Quantitative trait loci mapping for two seed yield component traits in an oilseed rape (Brassica napus) cross. Plant Breed 130:640–646

    Article  Google Scholar 

  • Chen Y, Qi L, Zhang X, Huang J, Wang J et al (2013a) Characterization of the quantitative trait locus OilA1 for oil content in Brassica napus. Theor Appl Genet 126:2499–2509

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Deng W, Peng F, Truksa M, Singer S, Snyder CL et al (2013b) Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. Plant J 74:663–677. https://doi.org/10.1111/tpj.12151

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118(6):1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Cheung WY, Gugel RK, Landry BS (1998) Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard (Brassica junceae (L.) Czern. and Coss.). Genome 41:626–628

    Article  CAS  Google Scholar 

  • Christianson JA, Rimmer SR, Good AG, Lydiate DJ (2006) Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome 49:3q0-41

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Cunmin Qu, Huiyan Zhao, Fuyou Fu, Kai Zhang, Jianglian Yuan, Liezhao Liu, Rui Wang, Xinfu Xu, Kun Lu, Jia-Na Li, (2016) Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus. Frontiers in Plant Science 7

    Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Das S, Roscoe TJ, Delseny M, Srivastava PS, Lakshmikumaran M (2002) Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci 162(2):245–250

    Article  CAS  Google Scholar 

  • Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109(4):747–759

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dupont J, White PJ, Johnston KM et al (1989) Food safety and health effects of canola oil. J Am Coll Nutr 8:360–375

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, Landry BS, Renard M (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu -INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). TAG Theor Appl Genet 97(1-2):129–134

    Article  CAS  Google Scholar 

  • Dion Y, Gugel RK, Rakow GFW, Seguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Theor Appl Genet 91(8)

    Google Scholar 

  • Dreyer F, Graichen K, Jung C (2001) A major quantitative trait locus for resistance to Turnip Yellows Virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breed 120(6):457–462

    Article  CAS  Google Scholar 

  • Ecke W, Uzunova M, Weißleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Ferreira M, E M, Rimmer SR, Williams PH, Osborn TC (1995a) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217. https://doi.org/10.1094/Phyto-85-213

    Article  CAS  Google Scholar 

  • Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995b) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732

    Article  PubMed  Google Scholar 

  • Ferreria ME, Williams PH, Osborn TC (1995c) Mapping of locus controlling resistance to Albugo candida in B. napus using molecular markers. Phytopathology 85:218–220

    Article  Google Scholar 

  • Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tissue Org Cult 104:375–386

    Article  Google Scholar 

  • Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK (2016) Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by Resequencing. G3: Genes, Genomes, Genetics 6:793–803

    Article  CAS  Google Scholar 

  • Foisset N, Delourme R, Barret P, Renard M (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet 91(5)

    Google Scholar 

  • Fray MJ, Puangsomlee P, Goodrich J, Coupland G, Evans EJ, Arthur AE, Lydiate DJ (1997) The genetics of stamenoid petal production in oilseed rape (Brassica napus) and equivalent variation in Arabidopsis thaliana. TAG Theor Appl Genet 94(6-7):731–736

    Article  CAS  Google Scholar 

  • Friedt W, Snowdon RJ (2010) Oilseed rape. In: Vollmann J, Istvan R (eds) Handbook of plant breeding, vol 4: oil crops breeding, vol 4. Springer, Dordrecht, pp 91–126C. E

    Google Scholar 

  • Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Tingdong F, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Garg H, Sivasithamparam K, Banga SS, Barbetti MJ (2008) Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australasian. Plant Pathol 37:106–111

    Google Scholar 

  • Gea XT, Yu PL, Wan ZJ, You MP, Finnegan PM, Banga SS, Sandhu PS, Garg H, Salisbury PA, Barbetti MJ (2012) Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crops Res 127:248–258

    Article  Google Scholar 

  • Gebauer SK, Psota TL, Harris WS et al (2006) N-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83(6 Suppl):1526S–1535S. PubMed

    Article  CAS  PubMed  Google Scholar 

  • Getinet A, Rakow G, Downey RK (1996) Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can J Plant Sci 76(3):387–392

    Article  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126(3):407–417

    Article  CAS  Google Scholar 

  • Gillingham LG, Harris-Janz S, Jones PJH (2011) Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 46:209–228

    Article  CAS  PubMed  Google Scholar 

  • GOI (2017) In: Third advance Estimates of Production of Food grains for 2016-17. Agricultural Statistics Division, Department of Agriculture Cooperation & Farmers welfare, GOI, New Delhi. http://agricoop.nic.in/statistics/advance-estimate

  • Gómez-Campo C (1999) Biology of Brassica coenospecies. Elsevier, Netherlands, pp 33–58

    Book  Google Scholar 

  • Gomez-Campo C, Prakash S (1999) Origin and domestication. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier Publishers, Amsterdam, pp 33–58

    Chapter  Google Scholar 

  • Gunstone F (2011) Vegetable oils in food technology: composition, properties and uses. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  • Gupta US (2005) Physiology of stressed crops, volume II. Nutrient relations. Science Publishers INC, Enfield, pp 1–25

    Google Scholar 

  • Gyawali S, Harrington M, Durkin J, Horner K, Parkin IA, Hegedus DD, Bekkaoui D, Buchwaldt L (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36(6):72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60(7):1953–1968

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Fukuoka H, Matsumoto S (2013) Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 8:e54745. https://doi.org/10.1371/journal.pone.0054745

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hauser S, Stevems M, Mougel C, Smith HG, Fritsch C, Herrbach E et al (2000) Biological, serological and molecular variability suggest three distinct polerovirus species infecting beet or rape. Phytopathology 90:460–466 https://doi.org/10.1094/PHYTO.2000.90.5.460

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wu D, Wei D et al (2017) GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci Rep 7:15971

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hegi G (1919) Illustrierte Flora von Mittel-Europe, 4th edn, Munchen

    Google Scholar 

  • Heneen WK, Jørgensen RB (2001) Cytology, RAPD, and seed colour of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines. Genome 44(6):1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Honsdorf N, Becker HC, Ecke W (2010) Association mapping for phenological, morphological, and quality traits in canola quality winter rapeseed (Brassica napus L.). Genome 53:899–907

    Article  CAS  PubMed  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape. Genome 46(3):454–460

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Quiros C, Arus P, Strass D, Robbelen G (1995) Mapping of a gene determining linolenic acid concentration in rapeseed with DNA-based markers. Theor Appl Genet 90(2)

    Google Scholar 

  • Hu J, Li G, Struss D, Quiros CF (1999) SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, Brassica napus. Plant Breed 118(2):145–150

    Article  CAS  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113(3):497–507

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ, Jestin C, Welham SJ, King GJ, Manzanares-Dauleux MJ, Fitt BDL, Delourme R (2016) Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus). Theor Appl Genet 129:169–180

    Article  CAS  PubMed  Google Scholar 

  • Ignatov A, Artem’eva A, Hida K (2008) Origin and Expansion of Cultivated Brassica rapa in Eurasia: Linguistic Facts. V International Symposium on Brassicas and XVI International Crucifer Genetics Workshop, Brassica 2008 867. 867. 81–88. https://doi.org/10.17660/ActaHortic.2010.867.9

  • Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J (2003) Delimitation of the fertility restorer locus Rfk1 to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol Gen Genomics 269(3):388–394

    Google Scholar 

  • Jagannath A, Arumugam N, Gupta V, Pradhan A, Burma PK, Pental D (2002) Development of transgenic barstar lines and identification of a male sterile (barnase)/restorer (barstar) combination for heterosis breeding in Indian oilseed mustard (Brassica juncea). Curr Sci 80:46–52

    Google Scholar 

  • Jain RK (1978) Effect of root-knot nematode, Meloidogyne javanica on Japan sarso. Indian J Agri Res 12:92

    Google Scholar 

  • Jain A, Bhatia S, Banga SS, Prakash S, Lakshmikumaran M (1994) Potential use of random amplified polymorphic DNA (RAPD) to study the genetic diversity in Indian mustard (Brassica juncea (L) Czern and Coss) and its relationship with heterosis. Theor Appl Genet 88:116–122

    Article  CAS  PubMed  Google Scholar 

  • Janeja HS, Banga SS, Lakshmikumaran M (2003) Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet 107(1):148–154

    Article  CAS  PubMed  Google Scholar 

  • Jean M, Brown GG, Landry BS (1998) Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the ‘Polima’ CMS of canola (Brassica napus L.). TAG Theor Appl Genet 97(3):431–438

    Article  CAS  Google Scholar 

  • Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares B, Dauleux M, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27:271–287

    Article  Google Scholar 

  • Jiang Y, Wang JH, Yang H, Xu MY, Yuan S, Sun W, Xu WL, Xi DH, Lin HH (2010) Identification and sequence analysis of turnip mosaic virus infection on cruciferous crops in southwest of China. J Plant Pathol 92(1):241–244

    CAS  Google Scholar 

  • John PH, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    Article  CAS  Google Scholar 

  • Johnson GH, Keast DR, Kris-Etherton PM (2007) Dietary modeling shows that the substitution of canola oil for fats commonly used in the United States would increase compliance with dietary recommendations for fatty acids. J Am Diet Assoc 107:1726–1734

    Article  CAS  PubMed  Google Scholar 

  • Jourdren C, Barret P, Brunel D, Delourme R, Renard M (1996) Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet 93(4):512–518

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Gupta S, Kumar N, Akhatar J, Banga SS (2014) Euphytica 199:325–338. https://doi.org/10.1007/s10681-014-1133-1

    Article  CAS  Google Scholar 

  • Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirk JTO, Oram RN (1981) Isolation of erucic acid-free lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J Aust Inst Agr Sci 47:51–52

    CAS  Google Scholar 

  • Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B et al (2002a) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9:201–210

    Article  CAS  Google Scholar 

  • Kole C, Williams PH, Rimmer SR, Osborn TC (2002b) Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassicarapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 45(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Teutonico R, Mengistu A, Williams PH, Osborn TC (1996) Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopathology 86:367–369

    Article  CAS  Google Scholar 

  • Kolte SJ (1985) Diseases of annual edible oilseed crops, rapeseed-mustard and sesame diseases. CRC Press Inc., Boca Raton, p 2

    Google Scholar 

  • Kris-Etherton PMAHA (1999) Science advisory: monounsaturated fatty acids and risk of cardiovascular disease. J Nutr 129:2280–2284

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma P, Thomas L, Agnihotri A, Banga S (2009) Canola cultivation in India: scenario and future strategy. 16th Australian research assembly on brassicas. Ballarat Victoria:2009

    Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA et al (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605. https://doi.org/10.1111/nph.12043

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol J 13:983–992. https://doi.org/10.1111/pbi.1234

    Article  CAS  PubMed  Google Scholar 

  • Lefort-Busan M, Dattee Y, Guillot-Iemoine B (1987) Heterosis and genetic distance in rape (Brassica napus) use of kinship coefficient. Genome 29:11–18

    Article  Google Scholar 

  • Li YY, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C (2007) QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aus J of Agri res 58:759–766

    Article  CAS  Google Scholar 

  • Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N (2014a) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L). DNA Res 21(4):355–367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li N, Shi J, Wang X, Liu G, Wang H (2014b) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L). BMC Plant Biol 4(1):114

    Article  CAS  Google Scholar 

  • Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z et al (2015) BnaC9.SMG7b functions as a positive regulator of number of seeds per silique in rapeseed (Brassica napus L.) by regulating the formation of functional female gametophytes. Plant Physiol 169:2744–2760

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu J (1996) Development of Monogenic Lines for Resistance to from a Canadian Cultivar. Phytopathology 86(9):1000

    Article  Google Scholar 

  • Liu S, Wang H, Zhang J, Fitt BD, Xu Z, Evans N, Liu Y, Yang W, Guo X (2005) In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24(3):133–144

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci U S A 112:E5123–E5132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu X, Huang M, Fan B, BucklerE S, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12(2):e1005767

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J et al (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lu Y-H, Arnaud D, Belcram H, et al. (2012) A Dominant Point Mutation in a RINGv E3 Ubiquitin Ligase Homoeologous Gene leads to Cleistogamy in Brassica napus. The Plant Cell. 24(12):4875–4891. https://doi.org/:10.1105/tpc.112.104315

  • Lu K, Peng L, Zhang C, Lu J, Yang B, Xiao Z, Liang Y, Xu X, Qu C, Zhang K, Liu L (2017) Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci 8:206

    PubMed Central  PubMed  Google Scholar 

  • Lydiate DJ, Rusholme Pilcher RL, Higgins EE, Walsh JA, Scoles GJ (2014) Genetic control of immunity to (TuMV) pathotype 1 in (Chinese cabbage). Genome 57(8):419–425

    Article  CAS  PubMed  Google Scholar 

  • Mag T (1983) Canola oil processing in Canada. J Am Oil Chem Soc 60:380–384

    Article  CAS  Google Scholar 

  • Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet 113(7):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Rahman MH, Stringam G, Yeh F, Good A (2007) Quantitative trait loci for early maturity and their potential in breeding for earliness in Brassica juncea. Euphytica 154:101–111

    Article  CAS  Google Scholar 

  • Marjanović-Jeromela A, Atlagić J, Stojanović D, Terzić S, Mitrović P, Milovac Ž, Dedić D (2016) Achievements in NS rapeseed hybrids breeding. SelSem XXII(2):49–60

    Google Scholar 

  • Massand PP, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145

    Article  CAS  Google Scholar 

  • Mathur RS, Swarup J (1965) Bacterial diseases of oilseed crops, Indian oilseeds. Journal 9:254–256

    Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO, Li J, Liu L, Liu S, McKay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556

    Article  CAS  PubMed  Google Scholar 

  • Molazem D, Azimi J, Marefat Ghasemi MH, Khatami A (2013) Correlation analysis in different planting dates and plant density of canola (Brassica Napus L.) varieties in Astara region. Life Science Journal 10(1s)

    Google Scholar 

  • Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. New Eng J Med 354:1601–1613

    Article  CAS  PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ et al (2009) Genomewide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Negi MS, Devic M, Delseny M, Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet 101(1–2):146–152

    Article  CAS  Google Scholar 

  • Neik TX, Barbetti MJ, Batley J (2017) Current status and challenges in identifying disease resistance genes in Brassica napus. Front Plant Sci 8:1788. https://doi.org/10.3389/fpls.2017.01788

    Article  PubMed Central  PubMed  Google Scholar 

  • Ni Y, Jiang H, Lei B, Li J, Chai Y (2008) Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1. Euphytica 159:1–16. https://doi.org/10.1007/s10681-007-9448-9

    Article  CAS  Google Scholar 

  • Oerke EC, Dehne HW, Schonbeck F, Weber A (1994) Crop production and crop protection—estimated losses in major food and cash crops, vol 808. Elsevier Science, Amsterdam https://doi.org/10.1017/S0021859600077467

    Google Scholar 

  • Oram RN, Kirk JTO (1995) Developing double low Indian mustard for the Australian Wheatbelt. In: Potter TD (ed) 10th Australian research assembly on brassicas. Struan, South Australia, pp 90–93

    Google Scholar 

  • Padmaja KL, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2005) Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theor Appl Genet 111(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Palmer CE, Keller WA, Arnison PG (1996) Experimental haploidy in Brassica species. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 2. Kluwer, Dordrecht, pp 143–117

    Chapter  Google Scholar 

  • Panjabi P, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasms of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145

    Article  CAS  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    Article  CAS  PubMed  Google Scholar 

  • Parker P (1999) The mustard industry in Australia- opportunities for a new oilseed. In: Shea G (ed) 1999 oilseed crop updates. Agriculture Western Australia, Northam, pp 12–13

    Google Scholar 

  • Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas MO, Renard M, Delourme R (2001) Stability of QTL for Field Resistance to Blackleg across Two Genetic Backgrounds in Oilseed Rape. Crop Sci 41(1):197

    Article  CAS  Google Scholar 

  • Prabhu KV, Somers DJ, Rakow G, Gugel RK (1998) Molecular markers linked to white rust resistance in mustard Brassica juncea. Theor Appl Genet 97:865–870

    Article  CAS  Google Scholar 

  • Prakash S, Chopra VL (1988) Introgression of resistance to shattering in Brassica napus from Brassica juncea through non-homologous recombination. Plant Breed 101(2):167–168

    Article  Google Scholar 

  • Pushpa HD, Yadava DK, Singh N, Vasudv S, Saini N, Muthusamy V, Prabhu KV (2016) Validation of molecular markers linked to low glucosinolate QTLs for marker assisted selection in Indian mustard (Brassica juncea L. Czern & Coss). Indian J Genet 76(1):64–68

    CAS  Google Scholar 

  • Qu C, Zhao H, Fu F, Zhang K, Yuan J, Liu L, Wang R, Xu X, Lu K, Li J-N (2016) Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus. Front Plant Sci 7

    Google Scholar 

  • Qu YY, Mu P, Zhang HL, Chen CY, Gao YM, Tian Y et al (2008) Mapping QTL of root morphological traits at different growth stages in rice. Genetica 133:187–200

    Article  PubMed  Google Scholar 

  • Quarrie S, Pekic Quarrie S, Radosevic R et al (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, McVetty PB, Li G (2007) Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet 115(8):1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Rahman H, Bennett RA, Kebede B (2017) Mapping of days to flower and seed yield in spring oilseed Brassica napus carrying genome content introgressed from Brassica oleracea. Mol Breed 37(1):5

    Article  CAS  Google Scholar 

  • Rahman H, Bennett RA, Kebede B (2018) Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus. PLoS One 13(1):e0189723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raman R, Raman H, Kadkol GP, Coombes N, Taylor B, Luckett D (2011) Genome-wide association analyses of loci for shatter resistance in brassicas proceedings of the Australian research assembly on brassicas, WaggaWagga. NSW, Australia, pp 36–41

    Google Scholar 

  • Raman R, Belinda T, Steve M, Jiri S, Paul E, Neil C, Ata R, Kurt L, David L, Neil W, Jacqueline B, David E, Xiaowu W, Harsh R (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125:405–418

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Diffey S, Carling J, Cowley RB, Kilian A, Luckett DJ, Raman H (2016) Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population. Crop Pasture Sci 67(4):298–307

    Article  Google Scholar 

  • Rana K, Atri C, Gupta M, Akhatar J, Sandhu PS, Kumar N, Jaswal R, Barbetti MJ, Banga SS (2017) Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa. Sci Rep 7(1)

    Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615

    Article  CAS  PubMed  Google Scholar 

  • Razaq M, Aslam M, Amer M, Shad SA (2011) Insect pest status of aphids on oilseed brassica crops and need for chemical control. Crop Environ 2:60–63

    Google Scholar 

  • Ren F, Guo Q-Q, Chang L-L, Liang C, Zhao C-Z, Zhong H, Li X-B, Herrera-Estrella L (2012) Brassica napus PHR1 Gene Encoding a MYB-Like Protein Functions in Response to Phosphate Starvation. PLoS One 7(8):e44005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Renard M et al (1992) Male sterilities and F1 hybrids in Brassica. In: Dattée Y, Dumas C, Gallais A (eds) Reproductive biology and plant breeding. Springer, Berlin/Heidelberg

    Google Scholar 

  • Saharan GS, Vema PR (1992) White rusts: A review of economically important species. International Development Research Centre (IDRC), Ottawa 315e:65p

    Google Scholar 

  • Saini N, Singh N, Kumar A, Vihan N, Yadav S, Vasudev S, Yadava DK (2016) Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breed Sci 66(5):831–837 https://doi.org/10.1270/jsbbs.16132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sarkkinen ES, Uusitupa MI, Gylling H et al (1998) Fat-modified diets influence serum concentrations of cholesterol precursors and plant sterols in hypercholesterolemic subjects. Metabolism 47:744–750

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C et al (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Singh M, Rathore SS, Raja P (2014) Physiological and stress studies of different rapeseed-mustard genotypes under terminal heat stress. Int J Genet Eng Biotech 5:133–142

    Google Scholar 

  • Singh BK, Nandan D, Supriya A, Ram B, Kumar A, Singh T, Meena HS, Kumar V, Singh VV, Rai PK, Singh D (2015) Validation of molecular markers for marker-assisted pyramiding of white rust resistance loci in Indian mustard (Brassica juncea L.). Can J Plant Sci 95:939–945

    Article  CAS  Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122(6):1075–1090

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123(1):1–8

    Article  CAS  Google Scholar 

  • Somers DJ, Rakow G, Prabhu VK, Friesen KR (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44(6):1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Rakow G, Rimmer SR (2002) Brassica napus DNA markers linked to white rust resistance in Brassica juncea. Theor Appl Genet 104:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). TAG 79:497–506

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SE, Tewari JP (2005) Clubroot on canola in Alberta in 2003 and 2004. Can Plant Dis Surv 85:72–73

    Google Scholar 

  • Stringam GR, McGregor DI, Pawlowski SH (1974) Chemical and morphological characteristics associated with seed coat colour in rapeseed. In: Proceedings of the 4th International Rapeseed Conference Giessen, Germany, pp 99–108

    Google Scholar 

  • Sun JH, Shi L, Zhang CY, FS X (2012) Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep 39:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Xia Z, Zhang L, Zhang Z, Guo Z, Qi C (2009) Cloning and sequence analysis of oilseed rape (Brassica napus) SHP2 gene. Bot Stud 50:403–412

    CAS  Google Scholar 

  • Tang DG, Guan KL, Li L, Honn KV, Chen YQ, Rice RL, Taylor JD, Porter AT (1997) Suppression of W256 carcinosarcoma cell apoptosis by arachidonic acid and other polyunsaturated fatty acids. Int J Cancer 72(6):1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Tanhuanpää PK, Vilkki JP, Vilkki HJ (1995) Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed ( L.). Genome 38(2):414–416

    Article  PubMed  Google Scholar 

  • Tao Z, Huang Y, Zhang L, Wang X, Liu G, Wang H (2017) BnLATE, a Cys2/His2-Type ZincFinger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus. PLoS One 12(1):e0168046. https://doi.org/10.1371/journal.pone.01680

    Article  PubMed Central  PubMed  Google Scholar 

  • Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93(1–2):282–286

    Article  CAS  PubMed  Google Scholar 

  • Tingdong F, Guangsheng Y, Xiaoniu Y (1990) Studies on “Three Line” Polima Cytoplasmic Male Sterility Developed in Brassica napus L. Plant Breed 104(2):115–120

    Article  Google Scholar 

  • U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452

    Google Scholar 

  • Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629

    Article  CAS  PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Robbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204. https://doi.org/10.1007/BF00222202

    Article  CAS  PubMed  Google Scholar 

  • Varshney A, Mohapatra T, Sharma RP (2004) Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor Appl Genet 109:153–159

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Sharpe AG, Jenner CE, Lydiate DJ (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. TAG Theor Appl Genet 99(7-8):1149–1154

    Article  CAS  Google Scholar 

  • Wang H (2004) Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chin J oil. Crop Sci 26:98–101

    Google Scholar 

  • Wang X, Wang H, Long Y, Li D, Yin Y et al (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. Napus. PLoS One 8(12):e80569. https://doi.org/10.1371/journal.pone.0080569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Li F, Qiong H (2016a) Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep 6:38493. https://doi.org/10.1038/srep38493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X (2016b) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7

    Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82(1):81–92

    Article  CAS  PubMed  Google Scholar 

  • Watts A, Singh SK, Bhadouria J, Naresh V, Bishoyi AK, Geetha KA, Chamola R, Pattanayak D, Bhat SR (2017) Brassica juncea lines with substituted chimeric GFP-CENH3 give haploid and aneuploid progenies on crossing with other lines. Front Plant Sci 7:2019

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei YL, Li JN, Lu J, Tang ZL, Pu DC, Chai YR (2007) Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep 34:105–120. https://doi.org/10.1007/s11033-006-9024-8

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J (2015) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J. https://doi.org/10.1111/pbi.12501

  • Woods DL, Capcara JJ, Downey RK (1991) The potential of mustard (Brassica juncea (L.) Coss) as an edible oil crop on the Canadian prairies. Can J Plant Sci 71:195–198

    Article  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.A as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One 8(7):e67740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao L, Zhao H, Zhao Z, Du D, Xu L, Yao Y, Zhao Z, Xing X, Shang G, Zhao H (2013) Genetic and physical fine mapping of a multilocular gene Bjln1 in Brassica juncea to a 208-kb region. Mol Breed 32(2):373–383

    Article  CAS  Google Scholar 

  • Xiao Y, Cai D, Yang W, Ye W, Younas M, Wu J, Liu K (2012) Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. Theor Appl Genet 125(3):437–447

    Article  CAS  PubMed  Google Scholar 

  • Xiaonan Li, Nirala Ramchiary, Vignesh Dhandapani, Su Ryun Choi, Yoonkang Hur, Ill-Sup Nou, Moo Kyoung Yoon, Yong Pyo Lim (2013) Quantitative trait loci mapping in Brassica Rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the a, B, and C subgenomes of Brassica species

    Google Scholar 

  • Xu BB, Li JN, Zhang XK, Wang R, Xie LL, Chai YR (2007) Cloning and molecular characterization of a functional flavonoid 3′ - hydroxylase gene from Brassica napus. J Plant Physiol 164:350–363. https://doi.org/10.1016/j.jplph.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Cao S, Hu K, Wang X, Huang W, Wang G, Lv Z, Liu Z, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2017) Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1 gene homologue (BjMc1) transcription. Sci Rep 7:3498. https://doi.org/10.1038/s41598-017-03755-0

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F Jinling Meng (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121(1):181–193

    Article  CAS  PubMed  Google Scholar 

  • Yang QY, Fan CC, Guo ZH, Qin J, Wu JZ, Li QY, Fu TD, Zhou YM (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125(4):715–729

    Article  CAS  PubMed  Google Scholar 

  • Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Jinxing T, Tingdong F (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925–938

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Yi B, Chen W, Zhang W, Tu J, Dilantha Fernando WG, Fu T (2010) Mapping of QTLs detected in a Brassicanapus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173(1):25–35

    Article  CAS  Google Scholar 

  • Yun-Hai L, Arnaud D, Belcram H, Falentin C, Rouault P, Piel N, Lucas M-O, Just J, Renard M Régine Delourme, and Boulos Chalhouba (2012) A dominant point mutation in a RINGv E3 ubiquitin ligase homoeologous gene leads to cleistogamy in Brassica napus. Plant Cell 24(12):4875–4891

    Google Scholar 

  • Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty PBE, Li G (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125:695–705

    Article  CAS  PubMed  Google Scholar 

  • Zhangsheng T, Huang Y, Zhang L, Wang X, Liu G, Wang H (2017) BnLATE, a Cys2/His2-type zinc-finger protein, enhances Silique shattering resistance by negatively regulating lignin accumulation in the Silique walls of Brassica napus. PLoS One. https://doi.org/10.1371/journal.pone.0168046

  • Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106(4):759–764

    Article  PubMed  Google Scholar 

  • Zhao J, Jamar DL, Lou P et al (2008) Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. Plant Cell Environ 31:887–900

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Udall JA, Quijada PA, Grau CR, Meng J, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Paulo MJ, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50:963–973

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124(2):407–421

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wang X, Wang H et al (2016) Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci 7:17

    PubMed Central  PubMed  Google Scholar 

  • Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W (2017) Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L). Front Plant Sci 8

    Google Scholar 

  • Zhou QH, Fu DH, Mason AS, Zeng YJ, Zhao CX, Huang YJ (2014) In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus. Mol Breed 33:881–894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder K. Sandhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandhu, S.K., Singh, G. (2018). Genomic-Assisted Breeding in Oilseed Brassicas. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-319-94746-4_14

Download citation

Publish with us

Policies and ethics