Skip to main content

Ordinary Differential Equations of Boundary Layer of Nanofluid’s Natural Convection

  • Chapter
  • First Online:
Heat Transfer Due to Laminar Natural Convection of Nanofluids

Part of the book series: Heat and Mass Transfer ((HMT))

  • 525 Accesses

Abstract

The partial differential equations of natural convection boundary layer with conventional fluid’s flow are equivalently transformed to the related ordinary differential equations. A feasibility is demonstrated to describe the mass, momentum and energy conservation of nanofluid’s natural convection by using those of nanofluid’s natural convection. By an innovative similarity transformation, the partial differential equations of nanofluid’s natural convection boundary layer are equivalently transformed to the related ordinary differential equations. On this basis, the two-dimensional ordinary differential equations of nanofluid’s natural convection are determined for extensive exploration of heat transfer of nanofluid’s natural convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shang, D.-Y., Wang, B.-X., Zhong, L.-C.: An innovative similarity transformation for in-depth research of convection heat and mass transfer. Sci. J. Energy Eng. Spec. Issue Convect. Heat Mass Transfer 3(3–1), 1–7 (2015)

    Google Scholar 

  2. Shang, D.Y., Zhong, L.C.: A similarity transformation of velocity field and its application for an in-depth study on laminar free convection heat transfer of gases. Int. J. Therm. Sci. 101, 106–115 (2016)

    Article  Google Scholar 

  3. Xuan, Y., Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transfer 43(19), 3701–3707 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yi Shang .

Appendix: Similarity Transformation of (4.12)–(4.14)

Appendix: Similarity Transformation of (4.12)–(4.14)

4.1.1 Similarity Transformation for (4.1)

Equation (4.12) is initially changed into

$$\rho_{pf} \left( {\frac{{\partial w_{x} }}{\partial x} + \frac{{\partial w_{y} }}{\partial y}} \right) + w_{x} \frac{{\partial \rho_{pf} }}{\partial x} + w_{y} \frac{{\partial \rho_{pf} }}{\partial y} = 0$$
(a)

With (4.15) we have

$$\frac{{\partial w_{x} }}{\partial x} = \left[ {2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} } \right]\frac{{dW_{x} }}{{d\eta_{pf} }}\frac{{\partial \eta_{pf} }}{\partial x} + \frac{1}{2}x^{{ - \frac{1}{2}}} \left[ {2\sqrt {g\,\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} } \right]W_{x}$$

Where

$$\begin{aligned} \frac{{\partial \eta_{pf} }}{\partial x} & = \frac{\partial }{\partial x}\left[ {\frac{y}{x}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} } \right] = \frac{\partial }{\partial x}\left[ {y\left( {\frac{1}{4}\frac{{g\cos \alpha \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|x^{ - 1} }}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/4} } \right] \\ & = - \frac{1}{4}\left[ {y\left( {\frac{1}{4}\frac{{g\cos \alpha \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|x^{3} }}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/4} } \right]x^{ - 2} = - \frac{1}{4}x^{ - 1} \eta_{pf} \\ \end{aligned}$$
(b)

Then,

$$\begin{aligned} \frac{{\partial w_{x} }}{\partial x} & = \left[ {2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} } \right]\frac{{dW_{x} }}{{d\eta_{pf} }}\left( { - \frac{1}{4}x^{ - 1} \eta_{pf} } \right) \\ & \quad + \frac{1}{2}x^{{ - \frac{1}{2}}} \left[ {2\sqrt {g\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} } \right]W_{x} \\ & = - \frac{1}{2}\left[ {\sqrt {\frac{g\cos \alpha }{x}} \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} } \right]\eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }} + \left[ {\sqrt {\frac{g\cos \alpha }{x}} \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} } \right]W_{x} \\ & = \sqrt {\frac{g\cos \alpha }{x}} \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \left( {W_{x} - \frac{1}{2}\eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }}} \right) \\ \end{aligned}$$
(c)

With (4.7) we have

$$\begin{aligned} \frac{{\partial w_{y} }}{\partial y} & = \left[ {2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{ - 1/4} } \right]\frac{{dW_{y} }}{{d\eta_{pf} }}\frac{{\partial \eta_{pf} }}{\partial y} \\ & = \left[ {2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{ - 1/4} } \right]\frac{{dW_{y} }}{{d\eta_{pf} }}\frac{1}{x}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} \\ & = 2\sqrt {\frac{g\cos \alpha }{x}} \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \frac{{dW_{y} }}{{d\eta_{pf} }} \\ \end{aligned}$$
(d)

While,

$$\frac{{\partial \rho_{pf} }}{\partial x} = \frac{{d\rho_{pf} }}{{d\eta_{pf} }}\frac{{\partial \eta_{pf} }}{\partial x} = - \frac{1}{4}x^{ - 1} \eta_{pf} \frac{{d\rho_{pf} }}{{d\eta_{pf} }}$$
(e)
$$\frac{{\partial \rho_{pf} }}{\partial y} = \frac{{d\rho_{pf} }}{{d\eta_{pf} }}\frac{{\partial \eta_{pf} }}{\partial y} = \frac{1}{x}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} \frac{{d\rho_{pf} }}{{d\eta_{pf} }}$$
(f)

By using (a)–(f), Eg. (4.12) can be changed to

$$\begin{aligned} & \rho_{pf} \left[ {\sqrt {\frac{g\cos \alpha }{x}} \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \left( {W_{x} - \frac{1}{2}\eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }}} \right) + 2\sqrt {\frac{g\cos \alpha }{x}} \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \frac{{dW_{y} }}{{d\eta_{pf} }}} \right] \\ & \quad + 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} W_{x} \left( { - \frac{1}{4}x^{ - 1} \eta_{pf} \frac{{d\rho_{pf} }}{{d\eta_{pf} }}} \right) \\ & \quad + 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{{ - \frac{1}{4}}} W_{y} \frac{1}{x}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} \frac{{d\rho_{pf} }}{{d\eta_{pf} }} = 0 \\ \end{aligned}$$

The above equation is divided by \(\left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \sqrt {\frac{g \cdot \,\cos \alpha }{x}}\) and transformed into

$$\rho_{pf} \left[ {\left( {W_{x} - \frac{1}{2}\eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }}} \right) + 2\frac{{dW_{y} }}{{d\eta_{pf} }}} \right] + 2W_{x} \left( { - \frac{1}{4}\eta_{pf} \frac{{d\rho_{pf} }}{{d\eta_{pf} }}} \right) + 2W_{y} \frac{{d\rho_{pf} }}{{d\eta_{pf} }} = 0$$

or

$$2W_{x} - \eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }} + 4\frac{{dW_{y} }}{{d\eta_{pf} }} - \frac{1}{{\rho_{pf} }}\frac{{d\rho_{pf} }}{{d\eta_{pf} }}\left( {\eta_{pf} W_{x} - 4W_{y} } \right) = 0$$
(4.23)

4.1.2 Similarity Transformation for (4.13)

Equation (4.13) can be rewritten as

$$\rho_{pf} \left( {w_{x} \frac{{\partial w_{x} }}{\partial x} + w_{y} \frac{{\partial w_{x} }}{\partial y}} \right) = \mu_{pf} \frac{{\partial^{2} w_{x} }}{{\partial y^{2} }} + \frac{{\partial w_{x} }}{\partial y}\frac{{\partial \mu_{pf} }}{\partial y} + g \cdot \cos \alpha \left| {\rho_{\infty ,pf} - \rho_{pf} } \right|$$
(g)

Where

$$\frac{{\partial w_{x} }}{\partial y} = 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \frac{{dW_{x} }}{{d\eta_{pf} }}\frac{{\partial \eta_{pf} }}{\partial y}$$

While,

$$\frac{{\partial \eta_{pf} }}{\partial y} = x^{ - 1} \left( {\frac{1}{4}Gr_{x,\infty,pf} } \right)^{1/4}$$

Then,

$$\frac{{\partial w_{x} }}{\partial y} = 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \frac{{dW_{x} }}{{d\eta_{pf} }}x^{ - 1} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4}$$
(h)
$$\begin{aligned} \frac{{\partial^{2} w_{x} }}{{\partial y^{2} }} & = 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \frac{{d^{2} W_{x} }}{{d\eta_{pf}^{2} }}x^{ - 1} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} \frac{{\partial \eta_{pf} }}{\partial y} \\ & = 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \frac{{d^{2} W_{x} }}{{d\eta_{pf}^{2} }}x^{ - 1} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} x^{ - 1} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} \\ & = 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \frac{{d^{2} W_{x} }}{{d\eta_{pf}^{2} }}x^{ - 2} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/2} \\ \end{aligned}$$
(i)
$$\frac{{\partial \mu_{pf} }}{\partial y} = \frac{{d\mu_{pf} }}{{d\eta_{pf} }}\frac{{\partial \eta_{pf} }}{\partial y} = \frac{{d\mu_{pf} }}{{d\eta_{pf} }}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} x^{ - 1}$$
(j)

Using the above related equations, (g) becomes

$$\begin{aligned} & \rho _{{pf}} \left[ {2\sqrt {gx\cos \alpha } \left| {\frac{{\rho _{{\infty ,pf}} }}{{\rho _{{w,pf}} }} - 1} \right|^{{1/2}} W_{x} \sqrt {\frac{{g\,\cos \alpha }}{x}} \left| {\frac{{\rho _{{\infty ,pf}} }}{{\rho _{{w,pf}} }} - 1} \right|^{{1/2}} \left( {W_{x} - \frac{1}{2}\eta _{{pf}} \frac{{dW_{x} }}{{d\eta _{{pf}} }}} \right)} \right. \\ & \quad + 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho _{{\infty ,pf}} }}{{\rho _{{w,pf}} }} - 1} \right|^{{1/2}} \left( {\frac{1}{4}Gr_{{x,\infty ,pf}} } \right)^{{ - \frac{1}{4}}} W_{y} 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho _{{\infty ,pf}} }}{{\rho _{{w,pf}} }} - 1} \right|^{{1/2}} \\ & \left. {\quad \times \frac{{dW_{x} }}{{d\eta _{{pf}} }}x^{{ - 1}} \left( {\frac{1}{4}Gr_{{x,\infty ,pf}} } \right)^{{1/4}} } \right] \\ & = 2\mu _{{pf}} \sqrt {gx\cos \alpha } \left| {\frac{{\rho _{{\infty ,pf}} }}{{\rho _{{w,pf}} }} - 1} \right|^{{1/2}} \frac{{d^{2} W_{x} }}{{d\eta _{{pf}}^{2} }}x^{{ - 2}} \left( {\frac{1}{4}Gr_{{x,\infty ,pf}} } \right)^{{1/2}} \\ & \quad + 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho _{{\infty ,pf}} }}{{\rho _{{w,pf}} }} - 1} \right|^{{1/2}} \frac{{dW_{x} }}{{d\eta _{{pf}} }}x^{{ - 1}} \left( {\frac{1}{4}Gr_{{x,\infty ,pf}} } \right)^{{1/4}} \frac{{d\mu _{{pf}} }}{{d\eta _{{pf}} }}\left( {\frac{1}{4}Gr_{{x,\infty ,pf}} } \right)^{{1/4}} x^{{ - 1}} \\ & \quad + g \cdot \cos \alpha \left| {\rho _{{\infty ,pf}} - \rho _{{pf}} } \right| \\ \end{aligned}$$

With consideration of the definition of local Grashof number \(Gr_{x,\infty ,pf}\), the above equation is divided by \(\rho_{pf} g\cos \alpha \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|\), and becomes the following one:

$$\begin{aligned} & 2W_{x} \left( {W_{x} - \frac{1}{2}\eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }}} \right) + 2W_{y} \left( {2\frac{{dW_{x} }}{{d\eta_{pf} }}} \right) = 2\nu_{pf} \frac{{d^{2} W_{x} }}{{d\eta_{pf}^{2} }}\left( {\frac{1}{4}\frac{1}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/2} \\ & \quad + 2\frac{1}{{\rho_{pf} }}\frac{{dW_{x} }}{{d\eta_{pf} }}\frac{{d\mu_{pf} }}{{d\eta_{pf} }}\left( {\frac{1}{4}\frac{1}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/2} + \frac{{\frac{{\rho_{\infty ,pf} }}{{\rho_{pf} }} - 1}}{{\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1}} \\ \end{aligned}$$

or

$$\begin{aligned} & 2W_{x} \left( {W_{x} - \frac{1}{2}\eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }}} \right) + 4W_{y} \frac{{dW_{x} }}{{d\eta_{pf} }} = \frac{{\nu_{pf} }}{{\nu_{\infty ,pf} }}\frac{{d^{2} W_{x} }}{{d\eta_{pf}^{2} }} \\ & \quad + \frac{1}{{\rho_{pf} }}\frac{{dW_{x} }}{{d\eta_{pf} }}\frac{{d\mu_{pf} }}{{d\eta_{pf} }}\frac{1}{{\nu_{\infty ,pf}^{{}} }} + \frac{{\frac{{\rho_{\infty ,pf} }}{{\rho_{pf} }} - 1}}{{\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1}} \\ \end{aligned}$$

The above equation is divided by \(\frac{{\nu_{pf} }}{{\nu_{\infty ,pf} }}\) and simplified to

$$\frac{{\nu_{\infty ,pf} }}{{\nu_{pf} }}\left( {W_{x} \left( {2W_{x} - \eta_{pf} \frac{{dW_{x} }}{{d\eta_{pf} }}} \right) + 4W_{y} \frac{{dW_{x} }}{{d\eta_{pf} }}} \right) = \frac{{d^{2} W_{x} }}{{d\eta_{pf}^{2} }} + \frac{1}{{\mu_{pf} }}\frac{{d\mu_{pf} }}{{d\eta_{pf} }}\frac{{dW_{x} }}{{d\eta_{pf} }} + \frac{{\nu_{\infty ,pf} }}{{\nu_{pf} }}\frac{{\frac{{\rho_{\infty ,pf} }}{{\rho_{pf} }} - 1}}{{\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1}}$$
(4.24)

4.1.3 Similarity Transformation for (4.14)

Equation (4.14) is rewritten as

$$\rho_{pf} c_{{p_{pf} }} \left( {w_{x} \frac{\partial T}{\partial x} + w_{y} \frac{\partial T}{\partial y}} \right) + \rho_{pf} T\left( {w_{x} \frac{{\partial c_{{p_{pf} }} }}{\partial x} + w_{y} \frac{{\partial c_{{p_{pf} }} }}{\partial y}} \right) = \frac{{\partial \lambda_{pf} }}{\partial y}\frac{\partial T}{\partial y} + \lambda_{pf} \frac{{\partial^{2} T}}{{\partial y^{2} }}$$

or

$$\begin{aligned} & \left( {\rho_{pf} c_{{p_{pf} }} \frac{\partial T}{\partial x} + \rho_{pf} T\frac{{\partial c_{{p_{pf} }} }}{\partial x}} \right)w_{x} + \left( {\rho_{pf} c_{{p_{pf} }} \frac{\partial T}{\partial y} + \rho_{pf} T\frac{{\partial c_{{p_{pf} }} }}{\partial y}} \right)w_{y} \\ & = \frac{{\partial \lambda_{pf} }}{\partial y}\frac{\partial T}{\partial y} + \lambda_{pf} \frac{{\partial^{2} T}}{{\partial y^{2} }} \\ \end{aligned}$$
(k)

Where

$$\frac{\partial T}{\partial x} = - \left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }}\frac{1}{4}\eta_{pf} x^{ - 1}$$
$$\frac{\partial T}{\partial y} = \left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} x^{ - 1}$$
$$\frac{{\partial^{2} T}}{{\partial y^{2} }} = (T_{w} - T_{\infty } )\frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }}\left({\frac{1}{4}Gr_{x,\infty ,pf}}\right )^{1/2} x^{ - 2}$$

Consulting (e) and (f), we have

$$\frac{{\partial \lambda_{pf} }}{\partial y} = \left({\frac{1}{4}Gr_{x,\infty ,pf}} \right)^{1/4} x^{ - 1} \frac{{d\lambda_{pf} }}{{d\eta_{pf} }}$$
$$\frac{{\partial c_{p_{pf}} }}{\partial x} = - \frac{1}{4}x^{ - 1} \eta_{pf} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}$$
$$\frac{{\partial c_{p_{pf}} }}{\partial y} = (\frac{1}{4}Gr_{x,\infty ,pf} )^{1/4} x^{ - 1} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}$$

Then, (k) is changed to

$$\begin{aligned} & \left[ {\rho_{pf} c_{{p_{pf} }} \left( { - \left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }}\frac{1}{4}\eta_{pf} x^{ - 1} } \right) + \rho_{pf} T\left( { - \frac{1}{4}x^{ - 1} \eta_{pf} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right)} \right]2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} W_{x} \\ & \quad \quad + \left[ {\rho_{pf} c_{{p_{pf} }} \left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} x^{ - 1} } \right. \\ & \left. {\quad \quad + \rho_{pf} T\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} x^{ - 1} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right]2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{{ - \frac{1}{4}}} W_{y} \\ & \quad = \left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} x^{ - 1} \frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/4} x^{ - 1} \\ & \quad \quad + \lambda_{pf} \left( {T_{w} - T_{\infty } } \right)\frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }}\left( {\frac{1}{4}Gr_{x,\infty ,pf} } \right)^{1/2} x^{ - 2} \\ \end{aligned}$$

i.e.

$$\begin{aligned} & \left[ {\rho_{pf} c_{{p_{pf} }} \left( { - \left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }}\frac{1}{4}\eta_{pf} x^{ - 1} } \right) + \rho_{pf} T\left( { - \frac{1}{4}x^{ - 1} \eta_{pf} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right)} \right] \\ & \times 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} W_{x} + \left[ {\rho_{pf} c_{{p_{pf} }} \left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }}x^{ - 1} + \rho_{pf} Tx^{ - 1} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right] \\ & \times 2\sqrt {gx\cos \alpha } \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} W_{y} = \left( {\frac{1}{4}\frac{{g\cos \alpha \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|x^{3} }}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/2} x^{ - 2} \frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\left( {T_{w} - T_{\infty } } \right)\frac{d\theta }{{d\eta_{pf} }} \\ & \quad \quad + \lambda_{pf} \left( {T_{w} - T_{\infty } } \right)\frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }}\left( {\frac{1}{4}\frac{{g\cos \alpha \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|x^{3} }}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/2} x^{ - 2} \\ \end{aligned}$$

The above equation is divided by \(\sqrt {\frac{g\cos \alpha }{x}} \left| {\frac{{\rho_{\infty ,pf} }}{{\rho_{w,pf} }} - 1} \right|^{1/2} \left( {T_{w} - T_{\infty } } \right)\) and this leads to

$$\begin{aligned} & \left[ {\rho_{pf} c_{{p_{pf} }} \left( { - \frac{d\theta }{{d\eta_{pf} }}\frac{1}{4}\eta_{pf} } \right) + \rho_{pf} \frac{T}{{T_{w} - T_{\infty } }}\left( { - \frac{1}{4}\eta_{pf} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right)} \right]2W_{x} \\ & \quad \quad + \left[ {\rho_{pf} c_{{p_{pf} }} \frac{d\theta }{{d\eta_{pf} }} + \rho_{pf} \frac{T}{{T_{w} - T_{\infty } }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right]2W_{y} \\ & \quad = \left( {\frac{1}{4}\frac{1}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/2} \frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\frac{d\theta }{{d\eta_{pf} }} + \lambda_{pf} \frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }}\left( {\frac{1}{4}\frac{1}{{\nu_{\infty ,pf}^{2} }}} \right)^{1/2} \\ \end{aligned}$$

The above equation is multiplied by \(\frac{{2\nu_{\infty ,pf} }}{{\lambda_{pf} }}\) and is simplified, then

$$\begin{aligned} & \frac{{\rho_{pf} \nu_{\infty ,pf} }}{{\lambda_{pf} }}\left[ {c_{p_{pf}} \left( { - \frac{d\theta }{{d\eta_{pf} }}\eta_{pf} } \right) + \frac{T}{{T_{w} - T_{\infty } }}\left( { - \eta_{pf} \frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right)} \right]W_{x} \\ & \quad \quad + \frac{{\rho_{pf} \nu_{\infty ,pf} }}{{\lambda_{pf} }}\left[ {c_{{p_{pf} }} \frac{d\theta }{{d\eta_{pf} }} + \frac{T}{{T_{w} - T_{\infty } }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right]4W_{y} \\ & \quad = \frac{1}{{\lambda_{pf} }}\frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\frac{d\theta }{{d\eta_{pf} }} + \frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }} \\ \end{aligned}$$

i.e.

$$\begin{aligned} & \frac{{\rho_{pf} \nu_{\infty ,pf} c_{p_{pf}} }}{{\lambda_{pf} }}\left[ {\left( { - \frac{d\theta }{{d\eta_{pf} }}\eta_{pf} } \right) + \frac{T}{{T_{w} - T_{\infty } }}\left( { - \eta_{pf} \frac{1}{{c_{p_{pf}} }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right)} \right]W_{x} \\ & \quad \quad + \frac{{\rho_{pf} \nu_{\infty ,pf} c_{p_{pf}} }}{{\lambda_{pf} }}\left[ {\frac{d\theta }{{d\eta_{pf} }} + \frac{T}{{T_{w} - T_{\infty } }}\frac{1}{{c_{p_{pf}} }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right]4W_{y} \\ & \quad = \frac{1}{{\lambda_{pf} }}\frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\frac{d\theta }{{d\eta_{pf} }} + \frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }} \\ \end{aligned}$$

Since \(\frac{{\rho_{pf} \nu_{\infty ,pf} c_{p_{pf}} }}{{\lambda_{pf} }} = Pr_{pf} \frac{{\nu_{\infty ,pf} }}{{\nu_{pf} }}\), the above equation can be simplified to

$$\begin{aligned} & Pr_{pf} \frac{{\nu_{\infty ,pf} }}{{\nu_{pf} }}\left[ {\left( { - \frac{d\theta }{{d\eta_{pf} }}\eta_{pf} } \right) + \frac{T}{{T_{w} - T_{\infty } }}\left( { - \eta_{pf} \frac{1}{{c_{p_{pf}} }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right)} \right]W_{x} \\ & + Pr_{pf} \frac{{\nu_{\infty ,pf} }}{{\nu_{pf} }}\left[ {\frac{d\theta }{{d\eta_{pf} }} + \frac{T}{{T_{w} - T_{\infty } }}\frac{1}{{c_{p_{pf}} }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right]4W_{y} \\ & = \frac{1}{{\lambda_{pf} }}\frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\frac{d\theta }{{d\eta_{pf} }} + \frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }} \\ \end{aligned}$$

Or

$$Pr_{pf} \frac{{\nu_{\infty ,pf} }}{{\nu_{pf} }}\left[ {\frac{d\theta }{{d\eta_{pf} }} + \frac{T}{{T_{w} - T_{\infty } }}\frac{1}{{c_{p_{pf}} }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right]\left( { - \eta_{pf} W_{x} + 4W_{y} } \right) = \frac{1}{{\lambda_{pf} }}\frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\frac{d\theta }{{d\eta_{pf} }} + \frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }}$$

Since \(\frac{T}{{T_{w} - T_{\infty } }} = \frac{{\left( {T_{w} - T_{\infty } } \right)\theta - T_{\infty } }}{{T_{w} - T_{\infty } }} = \theta + \frac{{T_{\infty } }}{{T_{w} - T_{\infty } }}\), the above equation becomes

$$Pr_{pf} \frac{{\nu_{\infty ,pf} }}{{\nu_{pf} }}\left( { - \eta_{pf} W_{x} + 4W_{y} } \right)\left[ {\frac{d\theta }{{d\eta_{pf} }} + \left( {\theta + \frac{{T_{\infty } }}{{T_{w} - T_{\infty } }}} \right)\frac{1}{{c_{p_{pf}} }}\frac{{dc_{p_{pf}} }}{{d\eta_{pf} }}} \right] = \frac{1}{{\lambda_{pf} }}\frac{{d\lambda_{pf} }}{{d\eta_{pf} }}\frac{d\theta }{{d\eta_{pf} }} + \frac{{d^{2} \theta }}{{d\eta_{pf}^{2} }}$$
(4.25)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shang, DY., Zhong, LC. (2019). Ordinary Differential Equations of Boundary Layer of Nanofluid’s Natural Convection. In: Heat Transfer Due to Laminar Natural Convection of Nanofluids. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-319-94403-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94403-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94402-9

  • Online ISBN: 978-3-319-94403-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics