Skip to main content

Breeding for Climate Resilience in Castor: Current Status, Challenges, and Opportunities

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Oilseed Crops

Abstract

Climate change and fossil fuel reserve depletion both pose challenges for energy security and well-being. Renewable bioenergy is considered as one of the practical alternative and castor plant is a potential choice due to the wide uses of castor oil in the industry. As a nonedible crop, castor plant is suitable for planting in marginal lands, without competition with food crops because of its strong tolerance to drought, high concentration of salt, and the adaptability to climate warming. Additionally, castor plant can be planted in heavy metal contaminated soils for phytoremediation. Lower genetic diversity, poor characterization and exploitation of germplasm and relative lag in genetic research limited castor breeding, resulting in low improvement of castor and the lack of high-yielding varieties with strong resistance to diseases and pests. With the development of the global economy, the increasing labor costs made it a great challenge for developing varieties suitable for machine harvesting. In this chapter, the challenges, priorities, and prospects of castor breeding were reviewed. The climate-smart (CS) traits, the genetic resources of CS genes, and the classical genetics and traditional breeding for CS traits are described; The achievements of molecular mapping of CS genes/QTLs, marker-assisted breeding, genomics-aided breeding, and genetic engineering for CS traits are summarized. These contents are expected to facilitate castor plant research and breeding for CS traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaa MA, Yusoh K, Hasany SF (2015) Synthesis and characterization of polyurethane-organoclay nano composites based on renewable castor oil polyols. Polym Bull 72(1):1–17

    Article  CAS  Google Scholar 

  • Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55(3):365–378

    Article  CAS  Google Scholar 

  • Angiosperm Phylogeny Group III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc Lond 161:105–121

    Article  Google Scholar 

  • Anjani (2005a) Purple-coloured castor (Ricinus communis L.)—a rare multiple resistant morphotype. Curr Sci 88:215–216

    Google Scholar 

  • Anjani K (2005b) RG 2722, Castor (Ricinus communis L.) germplasm with resistance to Macrophomina root rot. Indian J Plant Genet Resour 65:74

    Google Scholar 

  • Anjani K (2005c) RG1608, Castor (Ricinus communis L.) germplasm with resistance to Fusarium Wilt. Indian J Plant Genet Resour 65:74

    Google Scholar 

  • Anjani K (2005d) RG 2722 Macrophomina root rot resistant castor (Ricinus communis L.) germplasm. Indian J Genet 6:74

    Google Scholar 

  • Anjani K (2006) RG2819, castor (Ricinus communis L.) germplasm resistant to Macrophomina root rot and Fusarium wilt. Indian J Genet Resour 19:298

    Google Scholar 

  • Anjani K (2010a) Extra-early maturing germplasm for utilization in castor improvement. Ind Crops Prod 31:139–144

    Article  Google Scholar 

  • Anjani K (2010b) Pattern of genetic diversity among Fusarium wilt resistant castor germplasm accessions (Ricinus communis L.). Elec J Plant Breed 1:182–187

    Google Scholar 

  • Anjani K (2012) Castor genetic resources: a primary gene pool for exploitation. Ind Crops Prod 35:1–14

    Article  Google Scholar 

  • Anjani K, Jain SK (2004) Castor. In: Dhillon BS, Tayagi RK, Saxena S, Agrawal A (eds) Plant genetic resources: oilseed and cash crops. Narosa Publishing House, New Delhi, India, pp 105–117

    Google Scholar 

  • Anjani K, Raoof MA, Reddy AVP, Rao CH (2004) Sources of resistance to major castor (Ricinus communis) diseases. Plant Genet Resour Newsl 137:46–48

    Google Scholar 

  • Anjani K, Raoof MA (2005) Multiple disease resistance in castor (Ricinus communis L.). In: Abstracts of second global conference on plant health-global wealth, 25–29 Nov 2005, Udaipur, India, p 243

    Google Scholar 

  • Anjani K, Raoof MA (2009) RG-2787, a castor (Ricinus communis L.) germplasm source of multiple resistance. Indian J Plant Genet Resour 22:295–296

    Google Scholar 

  • Anjani K, Raoof MA (2010) Sources of resistance to Botrytis ricini (Godfrey) in castor germplasm. J Oilseeds Res 27(Spl Iss):20–21

    Google Scholar 

  • Anjani K, Raoof MA (2014) Analysis of mode of inheritance of Fusarium wilt resistance in castor (Ricinus communis L.). Plant Breed 133:101–107

    Article  CAS  Google Scholar 

  • Anjani K, Reddy AVP (2003) Extra-early maturing gene pool in castor (Ricinus communis L.). J Oilseeds Res 20:213–216

    Google Scholar 

  • Anjani K, Pallavi M, Babu Sudhakara SN (2007) Uniparental inheritance of purple leaf and the associated resistance to leafminer in castor bean. Plant Breed 126(5):515–520

    Article  Google Scholar 

  • Anjani K, Raoof MA, Lucose C (2010a) RG2787: a multiple disease and nematode resistant castor germplasm accession. J Oilseeds Res 27(Spl Iss):250–251

    Google Scholar 

  • Anjani K, Pallavi M, Babu SNS (2010b) Biochemical basis of resistance to leafminer in castor (Ricinus communis L.). Ind Crops Prod 31(1):192–196

    Article  CAS  Google Scholar 

  • Anjani K, Raoof MA, Santha Lakshmi Prasad M, Duraimurugan P, Lucose C, Yadav P, Prasad RD, Jawahar LJ, Sarada C (2018) Trait-specific accessions in global castor (Ricinus communis L.) germplasm core set for utilization in castor improvement. Ind Crops Prod 112:766–774

    Article  Google Scholar 

  • Ankineedu G, Rao GP (1973) Development of pistillate castor. Indian J Genet 33:416–422

    Google Scholar 

  • Araújo AE, Suassuna ND, Coutinho WD (2007) Doenças e seu controle. In: Azevedo DMP, Beltrão NEM (eds) O agronegócio da mamona no Brasil, 2nd edn. Embrapa Informação Tecnológica, Brasília, pp 281–303

    Google Scholar 

  • Arroyo-Caro JM, Chileh T, Kazachkov M, Zou J, Alonso DL, García-Maroto F (2013) The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Sci 200:29–40

    Article  CAS  Google Scholar 

  • Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning: a comprehensive review. Amer Med Assoc 294:2342–2351

    Article  CAS  Google Scholar 

  • Auld DL, Rolfe RD, McKeon TA (2001) Development of castor with reduced toxicity. J New Seeds 3:61–69

    Article  Google Scholar 

  • Auld DL, Pinkerton SD, Boroda E, Lombard KA, Murphy CK, Kenworthy KE, Becker WD, Rolfe RD, Ghetie V (2003) Registration of TTU-LRC castor germplasm with reduced levels of ricin and RCA (120). Crop Sci 43:46–747

    Article  Google Scholar 

  • Auld DL, Zanotto MD, McKeon T, Morris JB (2009) Castor. In: Vollmann J, Rajcan I (eds) Oil crops-handbook of plant breeding. Springer, New York, pp 316–332

    Google Scholar 

  • Babita M, Maheswari M, Rao LM, Shanker AK, Rao DG (2010) Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot 69:243–249

    Article  Google Scholar 

  • Bajay MM, Pinheiro JB, Batista CEA, Nobrega MBM, Zucchi MI (2009) Development and characterization of microsatellite markers for castor (Ricinus Communis L.), an important oleaginous species for biodiesel production. Conserv Genet Resour 1(1):237–239

    Article  Google Scholar 

  • Bajay MM, Zucchi MI, KIIhl TAM, Batista CEA, Monteiro M, Pinheiro JB (2011) Development of a novel set of microsatellite markers for Castor bean, Ricinus communis (Euphorbiaceae) 1. Am J Bot 98(4):e87–89

    Google Scholar 

  • Baldanzi M, Pugliesi C (1998) Selection for non-branching in castor, Ricinus communis L. Plant Breed 117:392–394

    Article  Google Scholar 

  • Baldanzi M, Fambrini M, Pugliesi C (2003) Redesign of the castor-bean plant body plan for optimal combine harvesting. Ann Appl Biol 142:299–306

    Article  Google Scholar 

  • Baldwin BS, Cossar RD (2009) Castor yield in response to planting date at four locations in the south-central United States. Ind Crops Prod 29:316–319

    Article  CAS  Google Scholar 

  • Barros PR, Haro A, Munoz J, Martinez JMF (2004) Isolation of a natural mutant in castor with high oleic/low ricinoleic acid content in the oil. Crop Sci 44:76–80

    Article  Google Scholar 

  • Basappa H (2007) Validation of integrated pest management modules for castor (Ricinus communis) in Andra Pradesh. Indian J Agric Sci 77:357–362

    CAS  Google Scholar 

  • Batista FAS, Lima EF, Smith Jan de, Azevedo DMP, Pires VA, Vieira RM, Santos JW (1998) Evaluation of resistance of genotypes of castor bean Ricinus communis L. to grey mold caused by botrytis ricini godfrey. Embrapa Cotton, Campina Grande, p 5

    Google Scholar 

  • Bauddh K, Singh RP (2012) Growth, tolerance efficiency and phyto remediation potential of Ricinus communis (L) and Brassica juncea (L) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf 85(11):13–22

    Article  CAS  PubMed  Google Scholar 

  • Beltrão NEM, Souza JG, Santos JW, Costa FX, Lucena AMA, Queiroz UC (2003) Biochemistry modifications in the castor plant cultivate BRS 188 Paraguaçu, submitted to deficiency and excess hidric. Rev Bras Oleagine Fibros 7:653–658 (in Portuguese, with English abstract)

    Google Scholar 

  • Beltrão NEM, Souza JG, Santos JW (2006) Metabolic alterations happened in castor (BRS 149-Nordestina) due to the hydric stress for deficiency and excess in the soil. Rev Bras Oleagin Fibros 10:977–984. (In Portuguese, with English abstract)

    Google Scholar 

  • Bentsen NS, Moller M (2017) Solar energy conserved in biomass: Sustainable bioenergy use and reduction of land use change. Renew Sustain Energy Rev 71:954–958

    Article  CAS  Google Scholar 

  • Bezerra Neto FV, Leal NR, Gonçalves LSA, Rêgo Filho LM, Amaral Júnior AT (2010) Descritores quantitativos na estimativa da divergência genética entre genótipos de mamoneira utilizando análises multivariadas. Rev Ciênc Agron 41:294–299

    Article  Google Scholar 

  • Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801

    Article  Google Scholar 

  • Brigham RD (1970a) Registration of castor variety Hale. Crop Sci 10:457

    Google Scholar 

  • Brigham RD (1970b) Registration of castor variety Dawn. Crop Sci 10:457

    Google Scholar 

  • Brigham RD (1970c) Registration of castor variety LYNN. Crop Sci 10:457

    Google Scholar 

  • Brigham RD (1993) Castor: return of an old crop. In: Janick J, Simon JE (eds) Progress in new crops. Wiley, New York, pp 380–383

    Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2009) Climate variability and change in the greater alpine region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225

    Article  Google Scholar 

  • Cagliari A, Margis-Pinheiro M, Loss G, Mastroberti AA, de Araujo Mariath JE, Margis R (2010) Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway. Plant Sci 179(5):499–509

    Article  CAS  PubMed  Google Scholar 

  • Campos CID, Lahr FAR, Christoforo AL, Nascimento MFD (2014) Castor oil based polyurethane resin used in the production of medium density fiberboard. Int J Compos Mater 4(4):185–189

    Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Chagas HA, Basseto MA, Rosa DD, Zanotto MD, Furtado EL (2010) Diagramatic scale to assess gray mold (Amphobotyrs ricini) in castor bean (Ricinus communis L.). Summa Phytopathol 36:164–167 (In Portuguese, with English abstract)

    Article  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28(9):951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain DE, Negro M, Caprio E, Rolando A (2013) Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol Conserv 167:127–135

    Article  Google Scholar 

  • Chen GQ, He X, Liao LP, McKeon TA (2004) 2S albumin gene expression in castor plant (Ricinus communis L.). J Am Oil Chem Soc 81:867–872

    Article  CAS  Google Scholar 

  • Chen GQ, He X, Liao LP, McKeon TA (2005) A simple and sensitive assay for distinguishing the expression of ricin and Ricinus communis agglutinin gene in developing castor seed. J Agric Food Chem 53:2358–2361

    Article  CAS  PubMed  Google Scholar 

  • Chen I, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liu X, Wang M, Wang J, Yan X (2014) Cadmium tolerance, accumulation and relationship with Cd subcellular distribution in Ricinus communis L. Acta Sci Circumst 34(9):2440–2446

    CAS  Google Scholar 

  • Darvishzadeh Reza (2016) Detection of ISSR markers linked to seed oil biochemical characteristics in castor (Ricinus communis L.) through association analysis. Genetika 48(3):807–817

    Article  Google Scholar 

  • de Souza Costa ET, Guilherme LRG, de Melo ÉEC, Ribeiro BT, Euzelina dos Santos BI, da Costa Severiano E, Faquin V, Hale BA (2012) Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biol Trace Elem Res 145(1):93–100

    Article  PubMed  CAS  Google Scholar 

  • Desai AG, Dange SRS, Pathak HC (2001) Genetics of resistance to wilt in castor caused by Fusarium oxysporum f. sp. ricini. Nanda and Prasad. J Mycol Plant Pathol 31(3):322–326

    Google Scholar 

  • Desai AG, Dange SRS (2003) Standardization of root dip inoculation technique for screening of resistance to wilt of castor. J Mycol Plant Pathol 33:73–75

    Google Scholar 

  • Dieter Jeschke W, Wolf O (1988) Effect of NaCI Salinity on growth, development, ion distribution, and ion translocation in castor bean (Ricinus communis L.). J Plant Physiol 132(1): 45–53

    Article  Google Scholar 

  • Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Chang Biol 17:990–996

    Article  Google Scholar 

  • DOR (2003) Castor in India. Directorate of Oilseeds Research, Hyderabad, India

    Google Scholar 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol Plant 111:46–54

    Article  CAS  Google Scholar 

  • de Lima GS, Gheyi HR, Nobre RG, Xavier DA, Soares LAD, Cavalcante LF, dos Santos JB (2016) Emergence, growth, and flowering of castor beans as a function of the cationic composition of irrigation water. Semina-Cienc Agrar 372:651–664

    Article  Google Scholar 

  • de Lima GS, Nobre RG, Gheyi HR, Soares LAD, de Azevedo CAV, de Lima VLA (2018) Salinity and cationic nature of irrigation water on castor bean cultivation. Rev Bras Engen Agri Ambien 22(4):267–272

    Article  Google Scholar 

  • Eastmond PJ (2004) Cloning and characterization of the acid lipase from castor beans. J Biol Chem 279:5540–45545

    Article  CAS  Google Scholar 

  • Falasca SL, Ulberich AC, Ulberich E (2012) Developing an agro-climatic zoning model to determine potential production areas for castor bean (Ricinus communis L.). Ind Crops Prod 40:85–191

    Article  Google Scholar 

  • FAO (2013) http://faostat3.fao.org/compare/E

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40(1):503–537

    Article  CAS  Google Scholar 

  • Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus Communis L.), BMC Plant Biol 10(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funk JL, Zachary VA (2010) Physiological responses to short-term water and light stress in native and invasive plant species in southern California. Biol Invasions 12:1685–1694

    Article  Google Scholar 

  • Grezes-Besset B, Lucante N, Kelechian V, Dargent R, Muller H (1996) Evaluation of castor bean resistance to Sclerotial wilt disease caused by Macrophomina phaseolina. Plant Dis 80:842–846

    Article  Google Scholar 

  • Giriraj K, Mensinkai SW, Sindagi SS (1974) Components of genetic variation for yield and its attributes in 6 × 6 diallel crosses of castor (Ricinus communis L.). Indian J Agric Sci 44:132–136

    Google Scholar 

  • Halek F, Delavari A, Kavousirahim A (2013) Production of biodiesel as a renewable energy source from castor oil. Clean Technol Environ 15(6):1063–1068

    Article  CAS  Google Scholar 

  • Halling KC, Halling AC, Murray EE, Ladin BF, Houston L, Weaver RF (1985) Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucl Acids Res 13(22):8019–8033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanumantharao C, Raoof M, Lavanya C (2005) Study on segregation patterns and linkages between morphological characters and wilt resistance in castor (Ricinus communis L.). J Oilseeds Res 22(1):114–118

    Google Scholar 

  • Harland SC (1928) Th e genetics of Riciuns communis L. Bibl Genet 4:171–178

    Google Scholar 

  • Hegde DM, Sujatha M, Singh NB (2003) Castor in India. Directorate of Oilseeds Research, Hyderabad, India

    Google Scholar 

  • He X, Turner C, Chen GQ, Lin JT, McKeon TA (2004) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39:311–318

    Article  CAS  PubMed  Google Scholar 

  • Holliday P (1980) Fungus diseases of tropical crops. Cambridge University Press. Retrieved from https://search.proquest.com/docview/47900130?accountid=29149

  • Hooks JA, Williams JH, Gardner CO 1971)Estimates of heterosis from a diallel cross of castor, Ricinus communis L. Crop Sci 11:651–655

    Google Scholar 

  • Hu J, Zhu J, Xu HM (2000) Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet 101:264–268

    Article  CAS  Google Scholar 

  • Huang H, Yu N, Wang L, Gupta D, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102(23):11034–11038

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Working group I contribution to the IPCC fifth assessment report, Climate Change 2013: The Physical Science Basis IPCC (2013). https://doi.org/10.1017/cbo9781107415324

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  PubMed  Google Scholar 

  • Jayaraj S (1966) Influence of sowing times of castor varieties on their resistance to the leafhopper Empoasca flavescens (Homoptera Jassidae). Entomol Expert Appl 9:359–368

    Article  Google Scholar 

  • Jayaraj S (1967) Studies on the resistance of castor plants (Ricinus communis L.) to the leafhopper Empoasca flavescens (F.) (Homoptera Jassidae). J Appl Entomol 59:117–126

    Google Scholar 

  • Jayaraj S (1968) Studies on plant characters of castor associated with resistance to Empoasca flavescens Febr (Homoptera Jassidae) with reference to selection and breeding of varieties. Indian J Agric Sci 38:1–6

    Google Scholar 

  • Kallamadi PR, Nadigatla VPRGR, Mulpuri S (2015) Molecular diversity in castor (Ricinus communis L.). Ind Crops Prod 66:271–281

    Article  CAS  Google Scholar 

  • Kammili A, Raoof MA (2014) Analysis of mode of inheritance of Fusarium wilt resistance in castor (Ricinus communis L.). Plant Breed 133(1):101–107

    Article  CAS  Google Scholar 

  • Kanti M, Anjani K, Usha Kiran B, Vivekananda K (2016) Agro-morphological and molecular diversity in castor (Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands, India. Czech J Genetics Plant Breeding 51(3):96–109

    Article  Google Scholar 

  • Kim H, Lee KR, Go YS, Jung JH, Suh MC, Kim JB (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52:983–993

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni LG, Ramanamurthy GV (1977) Castor. Indian Council of Agric Research, New Delhi, India

    Google Scholar 

  • Kumar AM, Sreevathsa R, Reddy KN, Ganesh PT, Udayakumar M (2011) Amenability of castor to an Agrobacterium-mediated in planta transformation strategy using a cry1AcF gene for insect tolerance. J Crop Sci Biotechnol 14(2):125–132

    Article  Google Scholar 

  • Kumar MVN, Shankar VG, Ramya V, Priya PB, Ramanjaneyulu AV, Seshu G, Reddy DVV (2015) Enhancing castor (Ricinus communis L.) productivity through genetic improvement for Fusarium wilt resistance–a review. Ind Crops Prod 67:330–335

    Article  CAS  Google Scholar 

  • La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc Biol Sci 277. https://doi.org/10.1098/rspb.2010.0612

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakshmamma P, Lakshmi P, Anjani K (2004) Screening of castor germplasm accessions for drought tolerance. Indian J Plant Physiol 9:447–450

    Google Scholar 

  • Lakshmamma P, Lakshminarayana M, Prayaga L, Alivelu K, Lavanya C (2009) Effect of defoliation on seed yield of castor (Ricinus communis). Indian J Agric Sci 79(8):620–623

    Google Scholar 

  • Lakshmamma P, Prayaga Lakshmi (2010) Variability for water use efficiency traits and drought tolerance in castor Ricinus communis L. germplasm lines. J Oilseeds Res 27:81–84

    Google Scholar 

  • Lakshmamma P, Lakshmi Prayaga, Anjani K, Lavanya C (2010) Identification of castor genotypes for water use efficiency (WUE) and root traits. J Oilseeds Res 27(Spl Iss):187–189

    Google Scholar 

  • Prayaga Lakshmi, Lakshmamma P (2006) Screening castor Ricinus communis L. germplasm lines for thermal tolerance. J Oilseeds Res 23:353–355

    Google Scholar 

  • Lakshminarayana M (2003) Host plant resistance in castor against major insectpests. In: Extend summaries: national seminar on stress management in oilseeds for attaining self-reliance in vegetable oils, Hyderabad, India, 28–30 Jan, p 107

    Google Scholar 

  • Lakshminarayana M, Raoof MA (2006) Research Achievements. C. Crop Protection. In: Hegde DM (ed) AICRP on Castor, DOR, 2006. Research achievements in castor. All India Co-ordinated Research Project on Castor, Directorate of Oilseeds Research, Hyderabad, India, pp 49–80

    Google Scholar 

  • Lakshminarayana M, Anjani K (2009) Screening for confirmation of reaction of castor genotypes against leafhopper (Empoasca flavescens Fabr.) and capsule borer (Conogethes punctiferalis Guen.). J Oilseeds Res 26(Spl Iss):457–459

    Google Scholar 

  • Lakshminarayana M, Anjani K (2010) Sources of resistance in castor against capsule borer Conogethes (Dichocrocis) punctifaralis Guen. J Oilseeds Res 27(Spl Iss):273–274

    Google Scholar 

  • Lavanya C, Gopinath V (2008) Study on inheritance of morphological characters and sex expression in pistillate lines of castor. Indian J Genet 68:275–282

    Google Scholar 

  • Lavanya C, Raoof MA, Santha Lakshmi Prasad M (2011) Genetics of resistance to Fusarium wilt in castor caused by Fusarium oxysporum f.sp. ricini. Indian Phytopathol 64(2):151–153

    Google Scholar 

  • Li G, Wanb S, Zhoua J, Yanga Z, Qina P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops Prod 31:13–19

    Article  CAS  Google Scholar 

  • Liu C, Lu J, Yin X, Bi C, Weng D, Zhong J, Liu S, Shi Z, Cheng Y (2014) Genetic analysis of traits related to plant height in Ricinus communis L. based on QTL mapping. Acta Agron Sin 40(4):751–759

    Article  CAS  Google Scholar 

  • Liu S, Yin X, Lu J, Liu C, Bi C et al (2016) The first genetic linkage map of Ricinus communis L. based on genome-SSR markers. Ind Crops Prod 89:103–108

    Article  CAS  Google Scholar 

  • Lu J, Shi Y, Yin X et al (2016) A method for the genetic transformation of acupuncture-vacuum infiltration assisted Agrobacterium tumefaciens to mediate castor seeds [P]. China: 201610263300.8, 2016-04-26

    Google Scholar 

  • Lung SC, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41(12):1073–1088

    Article  CAS  PubMed  Google Scholar 

  • Machado EL, Silva SA (2013) Design and validation of SSR microsatellite primers for castor bean. Pesqui Agropecu Bras 48(11):1457–1463

    Article  Google Scholar 

  • Madankar CS, Pradhan S, Naik SN (2013) parametric study of reactive extraction of castor seed (Ricinus communis L) for methyl ester production and its potential use as bio lubricant. Ind Crop Prod 43(1):283–290

    Article  CAS  Google Scholar 

  • Malathi B, Ramesh S, Rao KV, Reddy VD (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147(3):441–449

    Article  CAS  Google Scholar 

  • Manjula K, Sarma PS, Ramesh T, Rao TGN (2003a) Evaluation of castor genotypes for moisture stress. Indian J Plant Physiol 8:319–322

    Google Scholar 

  • Manjula K, Sarma PS, Ramesh T, Rao TGN (2003b) Screening of castor genotypes for drylands using PEG induced stress. J Oilseeds Res 20:170–171

    Google Scholar 

  • McKeon TA, Chen GQ (2003) Transformation of Ricinus communis, the castor plant, Google Patents

    Google Scholar 

  • Meeks KB, Auld DL, Foster MA, Rieff JM (2010) Salt and drought tolerance incastor (Ricinus communis L.). In: New crops: exploring diversity preserving our future. The Association for the Advancement of Industrial Crops, Fort Collins, Colorado

    Google Scholar 

  • Mehta DR (2000) Combining ability analysis for yield and its component characters in castor (Ricinus communis L.). Indian J Agric Res 34:200–202

    Google Scholar 

  • Melo E, Costa E, Guilherme L, Faquin V, Nascimento C (2009) Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J Hazard Mater 168(1):479–483

    Article  CAS  PubMed  Google Scholar 

  • Mhaske SD, Mahatma MK, Jha S, Singh P, Mahatma L, Parekh VB, Ahmad T (2013) Castor (Ricinus communis L.) Rc-LOX5 plays important role in wilt resistance. Ind Crops Prod 45:20–24

    Article  CAS  Google Scholar 

  • Mi XJ, Xu RH, Liu AZ, Wu D, Tian B (2011) Cloning and characterization of glycerol-3-phosphate dehydrogenase gene (RcGPDH) from castor bean. Chin J Oil Crop Sci 33:451–458

    CAS  Google Scholar 

  • Milani M, Marcia Nobrega BM, Suassuna ND, Coutinho WM (2005) Resistance of castor oil (Ricinus communis L.) to grey mold caused by Amphobotrys. Embrapa, 22

    Google Scholar 

  • Mir ZA (2014) Association analysis for Fusarium wilt F. resistance in castor (Ricinus communis L.). Thesis for MS, Acharya NG Ranga agricultural university. Rajendranagar, Hyderabad

    Google Scholar 

  • Mizrahi Y, Blumenfeld A, Bittner S, Richmond A (1971) Abscisic acid and cytokinin contents of leaves in relation to salinity and relative humidity. Plant Physiol 48(6):752–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JB, Wang ML, Morse AS (2011) Wild crop relatives: genomic and breeding resources. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer-Verlag, Berlin Heidelberg, pp 97–107

    Google Scholar 

  • Moshkin VA (ed) (1986) Castor. Amerind, New Delhi, India

    Google Scholar 

  • Mullualem D, Alemaw G, Petros Y, Alemu S (2017) Phenotypic variability and association of traits among yield and yield-related traits in Castor (Ricinus communis L.) accessions at Melkassa, Central Rift Valley of Ethiopia. Afri J Agri Res 12(52):3562–3568

    Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Z, Sun L, Sun T (2009) Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard. Adv Environ Biol 3(3):255–262

    CAS  Google Scholar 

  • Nóbrega MBM, Geraldi IO, Carvalho ADF (2010) Evaluation of castor bean cultivars in partial diallel crosses. Pesqi Agropecu Bras 69:281–288 (In Portuguese, with English abstract)

    Google Scholar 

  • Pal R, Banerjee A, Kundu R (2013) Responses of castor bean (Ricinus communis L.) to lead stress. Proc Natl Acad Sci India Sect B: Biol Sci 83(4):643–650

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parvathaneni L, Prayaga L, Karusala A (2017) Selection of castor germplasm with important traits for drought tolerance under field conditions. Indian J Plant Physiol 22(3):295–303

    Article  Google Scholar 

  • Patel BS, Patel IS (2009) Management of shoot and capsule borer Conogathes punctifaralis L. in castor by intercropping. Trends Biosci 2:66–67

    Google Scholar 

  • Patel MK, Joshi M, Mishra A, Jha B (2015) Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell Tiss Org Cult 122(2):477–490

    Article  CAS  Google Scholar 

  • Patel PB, Pathak HC (2011) Genetics of resistance to wilt in castor caused by Fusarium oxysporum f. sp ricini. Agric Sci Dig 31:30–34

    Google Scholar 

  • Pathak HC, Dangaria CJ (1987) Combining ability for yield and its components in castor. Indian J Agri Sci 57:13–16

    Google Scholar 

  • Moraes PF, De Laat DM, Santos MEAHP, Colombo CA, Kiihl T (2014) Genes differentially expressed in castor bean genotypes (Ricinus communis L.) under water stress induced by PEG. Bragantia 74(1):25–32

    Google Scholar 

  • Peat JE (1928) Genetic studies in Ricinus communis L. J Genet 19:373–389

    Article  Google Scholar 

  • Pernollet CA, Korner-Nievergelt F, Jenni L (2015) Regional changes in the elevational distribution of the Alpine Rock Ptarmigan Lagopus muta helvetica in Switzerland. Ibis 157(4):823–836

    Article  Google Scholar 

  • Pinheiro HA, Silva JV, Endres L, Ferreira VM, Camara CA, Cabral FF, Oliveira JF, Carvalho LWT, Santos JM, Santos BG (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind Crops Prod 27:385–392. https://doi.org/10.1016/j.indcrop.2007.10.003 (helvetica in Switzerland. Ibis (Lond. 1859) 157:823–836. https://doi.org/10.1111/ibi.12298)

  • Perry BA (1943) Chromosome number and phylogenetic relationships in the euphorbiaceae. Am J Bot 30:527–543

    Article  Google Scholar 

  • Podukuichenko GV (1977) The VIR castor collection for breeding for Fusarium wilt resistance. Bull Inst Rest Imm NI Vavilov 69:57–59

    Google Scholar 

  • Podukuichenko GV (1991) Donors of resistance to Fusarium wilt in castor oil plant. Rev Plant Pathol 70:5831

    Google Scholar 

  • Pranavi B, Sitaram G, Yamini K, Dinesh Kumar V (2011) Development of EST–SSR markers in castor bean (Ricinus communis L.) and their utilization for genetic purity testing of hybrids. Genome 54(8):684–691

    Article  CAS  PubMed  Google Scholar 

  • Prasad YG, Anjani K (2000) Resistance to serpentine leafminer Liriomyza trifolii (Burgess) in castor (Ricinus communis L.). Indian J Agric Sci 71:351–352

    Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5(1):88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushpawathi B, Sarwar HAK, Raoof MA, Babu RR (1998) Management of wilt disease in castor. Indian J Plant Protect 26(2):177–180

    Google Scholar 

  • Qiu L, Yang C, Tian B, Yang J-B, Liu A (2010) Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol 10(1):278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajani VV, Parakhia AM (2009) Management of root rot disease (Macrophomina phaseolina) of castor (Ricinus communis) with soil amendments and biocontrol agents. J Mycol Plant Pathol 39:290–293

    Google Scholar 

  • Ramanathan T (2004) Applied genetic of oilseed crops. Dava Publishing House, New Delhi

    Google Scholar 

  • Rao PVR, Shankar VG, Reddy AV (2009) Variability studies in castor (Ricinus communis L.). Res Crops 10:696–698

    Google Scholar 

  • Reddy KRK, Ramaswamy N, Bahadur B (1987a) Cross incompatibility between Ricinus and Jatropha. Plant Cell Incomp Newsl 19:60–65

    Google Scholar 

  • Reddy KRK, Rao GP, Bahadur B (1987b) In vitro morphogenesis from seedling explants and callus cultures of castor (Ricinus communis L.). Phytomorph 37:337–340

    Google Scholar 

  • Reddy NR, Sujatha M, Reddy AV, Reddy VP (2011) Inheritance and molecular mapping of wilt resistance. Intl J Plant Breed 5(2):84–87

    Google Scholar 

  • Ribeiro LP, Costa EC (2008) Occurrence of Erinnyis ello and Spodoptera marima in castor bean plantation in Rio Grande do Sul State, Brazil. Ciencia Rural 38:2351–2353. https://doi.org/10.1590/s0103-84782008000800040 (In Portuguese, with English abstract)

    Article  Google Scholar 

  • Rivarola M, Foster JT, Chan AP, Williams AL, Rice DW, Liu X, Melake-Berhan A, Creasy HH, Puiu D, Rosovitz M (2011) Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS ONE 6(7):e21743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas-Barros P, Haro A, Martinez JMF (2005) Inheritance of high oleic/low ricinoleic acid content in the seed oil of castor mutant OLE-1. Crop Sci 45:157–162

    Article  CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  PubMed  Google Scholar 

  • Rui X (2014) Polyurethane foams containing renewable castor oil replacement: University of Missouri-Columbia, pp 1–96

    Google Scholar 

  • Rukhsar Patel MP, Parmar DJ, Kalolac AD, Kumar S (2017) Morphological and molecular diversity patterns in castor germplasm accessions. Ind Crops Prods 97:316–323

    Article  Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27(9):1509

    Article  CAS  PubMed  Google Scholar 

  • Salihu BZ, Falusi AO, Gana AS, Adebola MO, Daudu OAY (2017) Genetic parameter estimates and cluster distribution among local and exotic castor collections in Nigeria. Intl J Biol Res Preg 8(2):200–209

    Google Scholar 

  • Sarma AK, Singh MP, Singh KI (2006) Resistance of local castor genotypes to Achaea janata Linn. and Spodoptera litura Fabr. J Appl Zool Res 17:179–181

    Google Scholar 

  • Sathaiah V, Reddy TP (1985) Seed protein profiles of castor (Ricinus communis L.) and some Jatropha species. Genet Agric 39:35–43

    CAS  Google Scholar 

  • SausenTL Rosa LMG (2010) Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions. Acta Bot Bras 24:648–654

    Article  Google Scholar 

  • Savy Filho A (2005) Castor bean breeding. In: Borém A (ed) Improvement of cultivated species. Federal University of Viçosa, Viçosa, pp 429–452

    Google Scholar 

  • Scridel D, Brambilla M, Martin K, Lehikoinen A, Iemma A, Matteo A, Jähnig S, Caprio E, Bogliani G, Pedrini P, Rolando A, Arlettaz R, Chamberlain D (2018) A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160(3):489–515

    Article  Google Scholar 

  • Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22:140–150

    Article  PubMed  Google Scholar 

  • Senthilvel S, Shaik M, Anjani K, Shaw RK, Kumari P, Sarada C, Kiran BU(2016) Genetic variability and population structure in a collection of inbred lines derived from a core germplasm of castor. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-016-0356-8

    Article  CAS  Google Scholar 

  • Seo K-I, Lee G-A, Ma K-H, Hyun D-Y, Park Y-J, Jung J-W, Lee S-Y, Gwag J-G, Kim C-K, Lee M-C (2011) Isolation and characterization of 28 polymorphic SSR loci from castor bean (Ricinus communis L.). J Crop Sci Biotechnol 14(2):97–103

    Article  Google Scholar 

  • Severino LS, Lima CLD, Beltrão NEM, Cardoso GD, Farias VA (2005) Comportamento da mamoneira sob encharcamento do solo. Embrapa Algodão, Campina Grande, Brasilia, Brazil

    Google Scholar 

  • Severino LS, Alburuerque WG, Freire MAO, Gomes JA, Milani M (2009) Variability on percentage of seed hulls of castor seeds and its importance to breeding. Rev Cien Agron 40:94–98

    Google Scholar 

  • Severino LS, Auld DL, Baldanzi M, Cândido MJD, Chen G, Crosby W, Tan D et al (2012) A review on the challenges for increased production of castor. Agron J 104(4):853–880

    Article  Google Scholar 

  • Severino LS, Lima RLS, Castillo N, Lucena AMA, Auld DL, Udeigwe TK (2014) Calcium and magnesium do not alleviate the toxic effect of sodium on the emergence and initial growth of castor, cotton, and safflower. Ind Crops Prod 57:90–97

    Article  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164(3):317–322

    Article  CAS  Google Scholar 

  • Shankar VG, Rao PVR, Reddy AV (2010) Inheritance of certain morphological characters and fusarium wilt resistance in castor, Ricinus communis L. SABRAO J Breed Genet 42(2):57–64

    Google Scholar 

  • Sharma A, Chauhan RS (2011) Repertoire of SSRs in the castor bean genome and their utilization in genetic diversity analysis in Jatropha curcas. Comp Funct Genom 2011:286089

    Article  CAS  Google Scholar 

  • Sharma A (2012) Development of genome resources and their utilization in Jatropha through comparative genomics with castor bean. Thesis for Ph.D., Jaypee University of Information Technology, Solan

    Google Scholar 

  • Shaw RK, Shaik M, Mir ZA, Prasad MSL, Prasad RD, Senthilvel S (2016) Establishing a high throughput screening method for large scale phenotyping of castor genotypes for resistance to Fusarium wilt disease. Phytoparasitica 44(4):539–548

    Article  CAS  Google Scholar 

  • Shaw RK, Kadirvel P, Shaik M, Prasad MSL, Prasad R, Senthilvel S (2018) Genetic characterization of resistance to wilt disease caused by Fusarium oxysporum f. sp. ricini in castor (Ricinus communis L.). Plant Genet Resour 16(2):169–177

    Article  CAS  Google Scholar 

  • Shifriss O (1960) Conventional and unconventional systems controlling sex variations in Ricinus. J Genet 57:361–388

    Article  Google Scholar 

  • Silva JACD, Habert AC, Freire DMG (2013) A potential biodegradable lubricant from castor biodiesel esters. Lubr Sci 25(1):53–61

    Article  CAS  Google Scholar 

  • Silva SMS, Alves AN, Ghey HR, Beltrão NEM, Severino LS, Soares FAL (2005) Germination and initial growth of two cultivars of castor bean under saline stress. Rev Bras Eng Agr Amb Supplement 347–352 (in Portuguese, with English abstract)

    Google Scholar 

  • Silva SMS, Alves AN, Ghey HR, Beltrão NEM, Severino LS, Soares FAL (2008) Growth and production of two cultivars of castor bean under saline stress. Rev Bras Eng Agr Amb 12:335–342 (in Portuguese, with English abstract)

    Article  Google Scholar 

  • Simões KS, Silva SA, Machado EL, Brasileiro HS (2017a) Development of TRAP primers for Ricinus communis L. Genet Mol Res 16(2):gmr16029647

    Google Scholar 

  • Simões KS, Silva SA, Machado EL, Silva MS (2017b) Genetic divergence in elite castor bean lineages based on TRAP markers. Genet Mol Res 16 (3):gmr16039776

    Google Scholar 

  • Singh AS, Kumari S, Modi AR, Gajera BB, Narayanan S, Kumar N (2015) Role of conventional and biotechnological approaches in genetic improvement of castor (Ricinus communis L.). Ind Crops Prod 74:55–62

    Article  Google Scholar 

  • Singh D (1976) Castor-Ricinus communis (Euphorbiaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 84–86

    Google Scholar 

  • Singh M, Chaudhuri I, Mandal S, Chaudhuri R (2011) Development of RAPD markers linked to Fusarium wilt resistance gene in Castor Bean (Ricinus communis L.). Genet Eng Biotechnol J 28:1–9

    Google Scholar 

  • Soares JJ, Araújo LHA, Batista FAS (2001) Pragas e seu controle. In: Azevedo DMP, Beltrão NEM (eds) O agronegócio da mamona no Brasil. Embrapa Algodão/Emrapa Informação Tecnológica, Campina Grande, Brasília, Brazil, pp 213–227

    Google Scholar 

  • Soares DJ, Nascimento JF, Araújo AE (2010) Componentes monocíclicos do mofo cinzento (Amphotrys ricini) em frutos de diferentes genótipos de mamoneira. Proc Congresso Brasileiro de Mamona, 4th, 2010, João Pessoa. Embrapa Algodão, Campina Grande, Brasilia, Brazil, pp 957–962. http://www.cbmamona.com.br/pdfs/FIT-01.pdf. Accessed 21 Mar 2012

  • Soares DJ (2012) The gray mold of castor bean: a review. In: Cumagun CJR (ed) Plant pathology. InTech Publisher, Rijeka, Croatia, pp 219–240

    Google Scholar 

  • Solanki SS, Joshi P (2000) Combining ability analysis over environments of diverse pistillate and male parents for seed yield and other traits in castor (Ricinus communis L.). Indian J Genet 60:201–212

    Google Scholar 

  • Solanki SS, Joshi P, Gupta D, Deora VS (2003) Gene effects for yield contributing character in castor, Ricinus communis L., by generation mean analysis. J Oilseeds Res 20:217–219

    Google Scholar 

  • Srinivas Rao T, Lakshminarayana M, Anjani K (2000) Studies on the influence of bloom character of castor germplasm accessions on jassids and thrips infestation. In: Extended summaries of national seminar on oilseeds and oils-research and development needs in the millennium, Hyderabad, India, 2–4, Feb 2000, p 291

    Google Scholar 

  • Sujatha M (1996) Genetic and tissue culture studies in castor (Ricinus communis L.) and related genera. In: Ph.D Thesis, Osmania University, Hyderabad, India

    Google Scholar 

  • Sujatha M, Prabakaran AJ (2003) New ornamental Jatropha through interspecific hybridization. Genet Resour Crop Evol 5:75–82

    Article  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23(12):803–810

    Article  PubMed  CAS  Google Scholar 

  • Sujatha M, Sailaja M (2007) Development of transgenic castor for insect resistance. Extended summaries of the national seminar on changing global vegetable oils scenario: Issues and challenges before India, Hyderabad, India, Jan 29–31

    Google Scholar 

  • Sujatha M, Reddy TP, Mahasi M (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26(5):424–435

    Article  CAS  PubMed  Google Scholar 

  • Sujatha M, Lakshminarayana M, Tarakeswari M, Singh PK, Tuli R (2009) Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep 28 (6):935–946

    Article  CAS  PubMed  Google Scholar 

  • Sussel AB, Pozza EA, Castro HA (2009) Elaboration and validation of diagrammatic scale to evaluate gray mold severity in castor bean. Trop Plant Pathol 34:186–191 (In Portuguese, with English abstract)

    Google Scholar 

  • Sviridov A (1988) Inheritance of resistance to Fusarium in castorbean. Genetika 24:908–913

    Google Scholar 

  • Swarnlata MVRP, Rana BS (1984) Inheritance of yield and its components in castor. Indian J Genet 44:538–543

    Google Scholar 

  • Tan M, Wu K, Wang L, Yan M, Zhao Z, Xu J, Zeng Y, Zhang X, Fu C, Xue J (2014) Developing and characterising Ricinus communis SSR markers by data mining of whole-genome sequences. Mol Breed 34(3):893–904

    Article  CAS  Google Scholar 

  • Tan M, Xue J, Wang L, Huang J, Fu C, Yan X (2016) Transcriptomic analysis for different sex types of Ricinus communis L. during development from apical buds to inflorescences by digital gene expression profiling. Front Plant Sci 6:1–16

    Article  CAS  Google Scholar 

  • Thatikunta R, Sankar AS, Sreelakshmi J, Palle G, Leela C, Rani CVD (2016) Utilization of in silico EST-SSR markers for diversity studies in castor (Ricinus Communis L.). Physiol Mol Biol Plants 22(4):535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanki KV, Patel GP, Patel JR (2001) Varietal resistance in castor to Spodoptera litura Fabricius. Gujarat Agri Univ Res J 26:39–43

    Google Scholar 

  • Timko MP, Vasconcelos AC, Fairrothers DE (1980) Euploidy in Ricinus. I. Euploidy and gene dosage effects on cellular proteins. Biochem Genet 18:171–183

    Article  CAS  PubMed  Google Scholar 

  • Timko MP, Vasconcelos AC (1981) Euploidy in Ricinus- Euploidy effects on photosynthetic activity and content of chlorophyll-proteins. Plant Physiol 67(6):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob Chang Biol 18:3279–3290

    Article  Google Scholar 

  • Tomar RS, Parakhia MV, Thakkar JR, Rathod VM, Padhiyar SM, Thummar VD, Dalal H, Kothari VV, Kheni JV, Dhingani RM, Golakiya BA (2016) Development of linkage map and identification of QTLs responsible for fusarium wilt resistance in castor (Ricinus communis L.). Res J Biol 11(5):56–62

    Google Scholar 

  • Tomar RS, Parakhia M, Rathod V, Thakkar J, Padhiyar S, Thummar V, Dalal H, Kothari V, Kheni J, Dhingani R (2017) Molecular mapping and identification of QTLs responsible for charcoal rot resistance in Castor (Ricinus communis L.). Ind Crops Prod 95:184–190

    Article  CAS  Google Scholar 

  • Tregear JW, Roberts LM (1992) The lectin gene family of Ricinus communis: cloning of a functional ricin gene and three lectin pseudogenes. Plant Mol Biol 18(3):515–525

    Article  CAS  PubMed  Google Scholar 

  • Varón EH, Moreira MD, Corredor JP (2010) Effect of Corythucha gossypii on castor oil plant leaves: Sampling criteria and control by insecticides. Rev Corpoica Cien Tecnol Agropecu 11:41–47

    Article  Google Scholar 

  • Vijaya Lakshmi P, Satyanarayana J, Singh H, Ratnasudhakar T (2005) Incidence of green leafhopper Empoasca flavescens Fab. on castor Ricinus communis L. in relation to morphological characters and date of sowing. J Oilseeds Res 22:93–99

    Google Scholar 

  • Wang C, Li G, Zhang Z, Peng M, Shang Y, Luo R, Chen Y (2013) Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochem Syst Ecol 51:301–307

    Article  CAS  Google Scholar 

  • Wang ML, Mosjidis JA, Morris JB, Dean RE, Jenkins TM, Pederson GA (2006) Genetic diversity of Crotalaria germplasm assessed through phylogenetic analysis of EST-SSR markers. Genome 49(6):707–715

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Barkley NA, Jenkins TM (2009) Microsatellite markers in plants and insects. Part I: applications and biotechnology. Genes Genomes Genom 3:54–67

    Google Scholar 

  • Wang ML, Dzievit M, Chen Z, Morris JB, Norris JE, Barkley NA, Tonnis B, Pederson GA, Yu J (2017) Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers. Genome 60:193–200

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu L, Zheng L (1994) Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem 269:20312–20317

    CAS  PubMed  Google Scholar 

  • Wang Y, Xu W, Chen Z, Han B, Haque ME, Liu A (2018) Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis). Planta 247(3):559–572

    Article  CAS  PubMed  Google Scholar 

  • Weiss EA (1971) Castor, sesame and safflower. Leonard Hill, London, pp 529–744

    Google Scholar 

  • Weiss EA (2000) Castor oilseed crops. Blackwell Science, Oxford, UK, pp 13–52

    Google Scholar 

  • Wright G, Hubick K, Farquhar G (1988) Discrimination in carbon isotopes of leaves correlates with water-use efficiency of field-grown peanut cultivars. Funct Plant Biol 15(6):815–825

    Article  Google Scholar 

  • Xu W, Dai M, Li F Liu A (2014) Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean. Nucl Acids Res 42(11):6987–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YF, Hu GS, Chen YJ (2013) The study of oxidative stability of castor oil based biodiesel. Adv Mater Res 724–725:334–337

    Article  CAS  Google Scholar 

  • Zhang D (2010) Genetic diversity analysis and core collection construction of wild castor bean in South China. Thesis for MS, Guangdong Ocean University

    Google Scholar 

  • Zhang H, Guo Q, Yang J, Chen T, Zhu G, Peters M, Wei R, Tian L, Wang C, Tan D (2014) Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems. J Environ Sci 26(10):2048–2055

    Article  Google Scholar 

  • Zhong W, Hartung W, Komor E, Schobert C (1996) Phloem transport of abscisic acid in Ricinus communis L. seedlings. Plant Cell Environ 19:471–477

    Article  CAS  Google Scholar 

  • Zhou G, Ma BL, Feng JLC, Lu J, Qin P (2010) Determining salinity threshold level for castor bean emergence and stand establishment. Crop Sci 50:2030–2036

    Article  Google Scholar 

  • Zimmerman LH (1958) Castor bean, a new oil crop for mechanized production. Adv Agron 10:257–288

    Article  CAS  Google Scholar 

  • Zou Z, Huang Q, Xie G, Yang L (2018) Genome-wide comparative analysis of papain-like cysteine protease family genes in castor bean and physic nut. Sci Rep 8(1):331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegui Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, X., Lu, J., Agyenim-Boateng, K.G., Liu, S. (2019). Breeding for Climate Resilience in Castor: Current Status, Challenges, and Opportunities. In: Kole, C. (eds) Genomic Designing of Climate-Smart Oilseed Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-93536-2_8

Download citation

Publish with us

Policies and ethics