Skip to main content

Underwater Robotic Technology for Imaging Mesophotic Coral Ecosystems

  • Chapter
  • First Online:
Book cover Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

The development of advanced acoustic and optical imaging techniques along with autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) has enabled high-resolution benthic mapping and biological characterization of mesophotic coral ecosystems (MCEs) over large spatial scales. Underwater vehicles can be grouped into tethered and untethered vehicles. Tethered vehicles allow the pilot on the ship to remotely control the vehicle using live video streaming. Tethered vehicles include ROVs, towed sleds, and drop cameras. Untethered vehicles, particularly AUVs, rely on autonomy for navigation, obstacle avoidance, and situational awareness. Untethered vehicles also include manned submersibles and Lagrangian buoys. Hybrid remotely operated vehicles combine the capabilities of both AUVs and ROVs into one vehicle. Acoustic mapping using side-scan or multibeam sonars can offer much broader coverage than optical imaging and can be useful for habitat mapping. However, acoustic data generally have lower spatial resolutions and are more difficult to interpret since similar acoustic returns can correspond to more than one bottom type. Optical imaging from still and video cameras at close range delivers high-resolution data that are easy to interpret. Increased precision in underwater navigation enables time series of georeferenced optical and acoustical imagery for fine-scale detection of changes over longer temporal scales of years to decades. This chapter provides a summary of the advantages and disadvantages of both tethered and untethered vehicles for studies of MCEs, including their various imaging modalities, as well as illumination, positioning, navigation, and imaging considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong RA (2016) Landscape-level imaging of benthic environments in optically-deep waters. In: Finkl CW, Makowski C (eds) Seafloor mapping along continental shelves, Coastal Research Library 13. Springer, Cham

    Google Scholar 

  • Armstrong RA, Singh H, Torres J, Nemeth R, Can A, Roman C, Eustice R, Riggs L, Garcia-Moliner G (2006) Characterizing the deep insular shelf coral reef habitat of the Hind Bank Marine Conservation District (US Virgin Islands) using the Seabed autonomous underwater vehicle. Cont Shelf Res 26:194–205

    Article  Google Scholar 

  • Beijbom O, Edmunds PJ, Kline DI, Mitchell BG, Kriegman D (2012) Automated annotation of coral reef survey images. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference. IEEE, pp 1170–1177

    Google Scholar 

  • Beijbom O, Edmunds PJ, Roelfsema C, Smith J, Kline DI, Neal BP, Dunlap MJ, Moriarty V, Fan TY, Tan CJ, Chan S (2015) Towards automated annotation of benthic survey images: variability of human experts and operational modes of automation. PLoS ONE 10(7):e0130312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bewley M, Douillard B, Nourani-Vatani N, Friedman A, Pizarro O, Williams S (2012) Automated species detection: an experimental approach to kelp detection from sea-floor AUV images. In: Proceedings of the Australasian conference on robotics and automation

    Google Scholar 

  • Bewley M, Friedman A, Ferrari R, Hill N, Hovey R, Barrett N, Marzinelli EM, Pizarro O, Figueira W, Meyer L, Babcock R (2015) Australian sea-floor survey data, with images and expert annotations. Sci Data 2:150057

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham B, Foley B, Singh H, Camill R, Delaporta K, Eustice R, Mallios A, Mindell D, Roman C, Sakellariou D (2010) Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J Field Robot 27(6):702–717

    Article  Google Scholar 

  • Blyth-Skyrme VJ, Rooney J, Parrish FA, Boland RC (2013) Mesophotic coral ecosystems: potential candidates as essential fish habitat and habitat areas of particular concern, Admin Rep H-13-02. Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu

    Google Scholar 

  • Bodenmann A, Thornton B, Ura T (2017) Generation of high-resolution three dimensional reconstructions of the seafloor in color using a single camera and structured light. J Field Robot 34(5):833–851

    Article  Google Scholar 

  • Bongiorno DL, Bryson M, TCL B, Dansereau DG, Williams SB (2017) Coregistered hyperspectral and stereo image seafloor mapping from an autonomous underwater vehicle. J Field Robot

    Google Scholar 

  • Bridge TC, Done TJ, Beaman RJ, Friedman, Williams SB, Pizarro O, Webster JM (2011a) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30(1):143–153

    Article  Google Scholar 

  • Bridge TC, Done TJ, Friedman A, Beaman RJ, Williams SB, Pizarro O, Webster JM (2011b) Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 428:63–75

    Article  Google Scholar 

  • Bridge TC, Beaman RJ, Done TJ, Webster JM (2012) Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef World Heritage Area, Australia. PLoS ONE 7(10):e48203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge TC, Ferrari R, Bryson M, Hovey R, Figueira WF, Williams SB, Pizarro O, Harborne AR, Byrne M (2014) Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef. PLoS ONE 9(11):e113079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryson M, Ferrari R, Figueira W, Pizarro O, Madin J, Williams S, Byrne M (2017) Characterization of measurement errors using structure-from-motion and photogrammetry to measure marine habitat structural complexity. Ecol Evol 7(15):5669–5681

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns JHR, Delparte D, Gates RD, Takabayashi M (2015) Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3:e1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns JHR, Delparte D, Kapono L, Belt M, Gates RD, Takabayashi M (2016) Assessing the impact of acute disturbances on the structure and composition of a coral community using innovative 3D reconstruction techniques. Methods Oceanogr 15:49–59

    Article  Google Scholar 

  • Chennu A, Färber P, De’ath G, de Beer D, Fabricius KE (2017) A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci Rep 7:7122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colin PL, Devaney DM, Hillis-Colinvaux L, Suchanek TH, Harrison JT (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38(1):111–128

    Google Scholar 

  • Costa B, Kendall MS, Parrish FA, Rooney J, Boland RC, Chow M et al (2015) Identifying suitable locations for mesophotic hard corals offshore of Maui, Hawaiʻi. PLoS ONE 10(7):e0130285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dansereau DG, Williams SB (2011) Seabed modeling and distractor extraction for mobile AUVs using light field filtering. In: Robotics and automation (ICRA), 2011 IEEE international conference. IEEE, pp 1634–1639

    Google Scholar 

  • Dansereau DG, Pizarro O, Williams SB (2015) Linear volumetric focus for light field cameras. ACM Trans Graph 34(2):15:1–15:20

    Article  Google Scholar 

  • Dunbabin M, Lang B, Wood B (2008) Vision-based docking using an autonomous surface vehicle. In: Robotics and automation (ICRA), 2008 IEEE international conference. IEEE, pp 26–32

    Google Scholar 

  • Duntley SQ (1963) Light in the sea. J Opt Soc Am 53:214–233

    Article  Google Scholar 

  • Englebert N, Bongaerts P, Muir PR, Hay KB, Pichon M, Hoegh-Guldberg O (2017) Lower mesophotic coral communities (60–125 m depth) of the northern Great Barrier Reef and Coral Sea. PLoS ONE 12(2):e0170336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eustice RM, Singh H, Leonard JJ (2006) Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans Robot 22(6):1100–1114

    Article  Google Scholar 

  • Farr N, Bowen A, Ware J, Pontbriand C, Tivey M (2010) An integrated, underwater optical/acoustic communications system. In: OCEANS 2010 IEEE-Sydney 2010 May 24. IEEE, pp 1–6

    Google Scholar 

  • Ferrari R, Bryson M, Bridge T, Hustache J, Williams SB, Byrne M, Figueira W (2016) Quantifying the response of structural complexity and community composition to environmental change in marine communities. Glob Chang Biol 22(5):1965–1975

    Article  PubMed  Google Scholar 

  • Figueira W, Ferrari R, Weatherby E, Porter A, Hawes S, Byrne M (2015) Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sens 7(12):16883–16900

    Article  Google Scholar 

  • Fricke HW, Knauer B (1986) Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone. Oecologia 71(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:371–381

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Pizarro O, Williams SB, Johnson-Roberson M (2012) Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PLoS ONE 7(12):e50440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlong ME, Paxton D, Stevenson P, Pebody M, McPhail SD, Perrett J (2012) Autosub Long Range: A long range deep diving AUV for ocean monitoring. In: Autonomous underwater vehicles (AUV). Institute of Electrical and Electronics Engineers, New York, 1–7

    Google Scholar 

  • German CR, Yoerger DR, Jakuba M, Shank TM, Langmuir CH, Nakamura KI (2008) Hydrothermal exploration with the autonomous benthic explorer. Deep Sea Res Pt I Oceanogr Res Pap 55(2):203–219

    Article  Google Scholar 

  • Ginsburg RN, James NP (1973) British Honduras by submarine. Geotimes 18:23–24

    Google Scholar 

  • Gleason ACR, Reid RP, Voss KJ (2007) Automated classification of underwater multispectral imagery for coral reef monitoring. In: OCEANS 2007. IEEE, pp 1–8

    Google Scholar 

  • González-Rivero M, Beijbom O, Rodriguez-Ramirez A, Holtrop T, González-Marrero Y, Ganase A, Roelfsema C, Phinn S, Hoegh-Guldberg O (2016) Scaling up ecological measurements of coral reefs using semi-automated field image collection and analysis. Remote Sens 8(1):30

    Article  Google Scholar 

  • Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Heyward A, Radford B (2019) Northwest Australia. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 337–349

    Chapter  Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29(2):247–251

    Article  Google Scholar 

  • Hine R, Willcox S, Hine G, Richardson T (2009) The wave glider: a wave-powered autonomous marine vehicle. In: OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for our future: global and local challenges. IEEE, pp 1–6

    Google Scholar 

  • Hobson BW, Bellingham JG, Kieft B, McEwen R, Godin M, Zhang Y (2012) Tethys-class long range AUVs–extending the endurance of propeller-driven cruising AUVs from days to weeks. In: Autonomous underwater vehicles (AUV), 2012 IEEE/OES. IEEE, pp 1–8

    Google Scholar 

  • Hoeksema BW, Reimer JD, Vonk R (2017) Editorial: biodiversity of Caribbean coral reefs (with a focus on the Dutch Caribbean). Mar Biodivers 47:1

    Article  Google Scholar 

  • Hover FS, Eustice RM, Kim A, Englot B, Johannsson H, Kaess M, Leonard JJ (2012) Advanced perception, navigation and planning for autonomous in-water ship hull inspection. Int J Robot Res 31(12):1445–1464

    Article  Google Scholar 

  • Huvenne VA, Tyler PA, Masson DG, Fisher EH, Hauton C, Hühnerbach V, Le Bas TP, Wolff GA (2011) A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon. PLoS ONE 6(12):e28755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inglis G, Smart C, Vaughn I, Roman C (2012) A pipeline for structured light bathymetric mapping. In: Intelligent robots and systems (IROS), 2012 IEEE/RSJ International Conference. IEEE, pp 4425–4432

    Google Scholar 

  • Jaffe JS (2015) Underwater optical imaging: the past, the present, and the prospects. IEEE J Ocean Eng 40(3):683–700

    Article  Google Scholar 

  • Jaffe JS, Franks PJ, Roberts PL, Mirza D, Schurgers C, Kastner R, Boch A (2017) A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics. Nat Commun 8:14189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen G, Ludvigsen M, Sørensen A, Aas LMS (2016) The use of underwater hyperspectral imaging deployed on remotely operated vehicles-methods and applications. IFAC-PapersOnLine 49(23):476–481

    Article  Google Scholar 

  • Johnson-Roberson M, Pizarro O, Williams SB, Mahon I (2010) Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J Field Robot 27(1):21–51

    Article  Google Scholar 

  • Johnson-Roberson M, Bryson M, Friedman A, Pizarro O, Troni G, Ozog P, Henderson JC (2017) High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology. J Field Robot 34(4):625–643

    Article  Google Scholar 

  • Kinsey JC, Eustice RM, Whitcomb LL (2006) A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC Conference of Maneuvering and Control of Marine Craft 88:1–12

    Google Scholar 

  • Lang JC (1974) Biological zonation at the base of a reef: observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. Am Sci 272–281

    Google Scholar 

  • Leon JX, Roelfsema CM, Saunders MI, Phinn SR (2015) Measuring coral reef terrain roughness using ‘Structure-from-Motion’ close-range photogrammetry. Geomorphology 242:21–28

    Article  Google Scholar 

  • Lirman D, Gracias NR, Gintert BE, Gleason ACR, Reid RP, Negahdaripour S, Kramer P (2007) Development and application of a video-mosaic survey technology to document the status of coral reef communities. Environ Monit Assess 125(1):59–73

    Article  PubMed  Google Scholar 

  • Locker SD, Armstrong RA, Battista TA, Rooney JJ, Sherman C, Zawada DG (2010) Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs29:329–345

    Article  Google Scholar 

  • Mahmood A, Bennamoun M, An S, Sohel F, Boussaid F, Hovey R, Kendrick G, Fisher RB (2016) Automatic annotation of coral reefs using deep learning. In: OCEANS 2016 MTS/IEEE Monterey. IEEE, pp 1–5

    Google Scholar 

  • Mahon I, Williams SB, Pizarro O, Johnson-Roberson M (2008) Efficient view-based SLAM using visual loop closures. IEEE Trans Robot 24(5):1002–1014

    Article  Google Scholar 

  • Manderson T, Li J, Dudek N, Meger D, Dudek G (2017) Robotic coral reef health assessment using automated image analysis. J Field Robot 34(1):170–187

    Article  Google Scholar 

  • Mazel CH, Strand MP, Lesser MP, Crosby MP, Coles B, Nevis AJ (2003) High-resolution determination of coral reef bottom cover from multispectral fluorescence laser line scan imagery. Limnol Oceanogr 48(1):522–534

    Article  Google Scholar 

  • Mullen AD, Treibitz T, Roberts PL, Kelly EL, Horwitz R, Smith JE, Jaffe JS (2016) Underwater microscopy for in situ studies of benthic ecosystems. Nat Commun 7:12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro O, Singh H (2003) Toward large-area mosaicing for underwater scientific applications. IEEE J Ocean Eng 28(4):651–672

    Article  Google Scholar 

  • Pizarro O, Friedman A, Bryson M, Williams S, Madin J (2017) A simple, fast, and repeatable survey method for underwater visual 3D benthic mapping and monitoring. Ecol Evol 7:1770–1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyle RL (2019) Advanced technical diving. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 959–972

    Google Scholar 

  • Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A, Parrish FA, Popp BN, Rooney J, Smith CM, Wagner D, Spalding HL (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed JK (1985) Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. Proc 5th Int Coral Reef Symp 6:249–254

    Google Scholar 

  • Ridao P, Carreras M, Ribas D, Sanz PJ, Oliver G (2014) Intervention AUVs: the next challenge. IFAC Proceedings 47(3):12146–12159

    Article  Google Scholar 

  • Roman C, Inglis G, McGilvray B (2011) Lagrangian floats as seafloor imaging platforms. Cont Shelf Res 31(15):1592–1598

    Article  Google Scholar 

  • Roman C, Inglis G, Vaughn I, Smart C, Dansereau D, Bongiorno D, Johnson-Roberson M, Bryson M (2013) New tools and methods for precision seafloor mapping. Oceanography 26(1):10–15

    Article  Google Scholar 

  • Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29:361–367

    Article  Google Scholar 

  • Sarda E, Dhanak M (2013) Unmanned recovery of an AUV from a surface platform. Oceans 13 MTS/IEEE, San Diego, pp 1–6

    Google Scholar 

  • Singh H, Whitcomb L, Yoerger D, Pizarro O (2000) Microbathymetric mapping from underwater vehicles in the deep ocean. Comput Vis Image Underst 79(1):143–161

    Article  Google Scholar 

  • Singh H, Armstrong R, Gilbes F, Eustice R, Roman C, Pizarro O, Torres J (2004a) Imaging coral I: imaging coral habitats with the Seabed AUV. Subsurf Sens Technol Appl 5(1):25–42

    Article  Google Scholar 

  • Singh H, Can A, Eustice R, Lerner S, McPhee N, Pizarro O, Roman C (2004b) Seabed AUV offers new platform for high-resolution imaging. EOS 85(31):289 294–295

    Article  Google Scholar 

  • Sinniger F, Harii S, Humblet M, Nakamura Y, Ohba H, Prasetia R (2019) Ryukyus Islands: Japan. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 231–247

    Chapter  Google Scholar 

  • Storlazzi CD, Dartnell P, Hatcher GA, Gibbs AE (2016) End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using Structure-from-Motion (SfM) technology. Coral Reefs 35:889–894

    Article  Google Scholar 

  • Suka R, Rooney J (2017) Acoustic characterization of mesophotic coral reef ecosystems of West Hawaiʻi. U.S. Dep Commer, NOAA Tech Memo, NOAA-TM-NMFS-PIFSC-61, 31 p

    Google Scholar 

  • Thrun S, Leonard J (2008) Simultaneous localization and mapping. Springer Handbook of Robotics; Siciliano, Khatib Editors. ISBN:978-3-540-23957-4, pp 871–886

    Google Scholar 

  • Trembanis AC, Forrest AL, Keller BM, Patterson MR (2017) Mesophotic coral ecosystems: a geoacoustically derived proxy for habitat and relative diversity for the leeward shelf of Bonaire, Dutch Caribbean. Front Mar Sci 4:51

    Article  Google Scholar 

  • Williams SB, Pizarro O, Webster JM, Beaman RJ, Mahon I, Johnson-Roberson M, Bridge TC (2010) Autonomous underwater vehicle–assisted surveying of drowned reefs on the shelf edge of the Great Barrier Reef, Australia. J Field Robot 27(5):675–697

    Article  Google Scholar 

  • Williams SB, Pizarro OR, Jakuba MV, Johnson CR, Barrett NS, Babcock RC, Kendrick GA, Steinberg PD, Heyward AJ, Doherty PJ, Mahon I (2012) Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot Autom Mag 19(1):73–84

    Article  Google Scholar 

  • Williams SB, Pizarro O, Steinberg DM, Friedma A, Bryson M (2016) Reflections on a decade of autonomous underwater vehicles operations for marine survey at the Australian Centre for Field Robotics. Annu Rev Control 42:158–165

    Article  Google Scholar 

  • Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, Ruhl HA, Morris KJ, Peakall J, Parsons DR, Sumner EJ, Darby SE, Dorrell RM, Hunt JE (2014) Autonomous underwater vehicles (AUVs): their past, presence and future contributions to the advancement of marine geoscience. Mar Geol 352:451–468

    Article  Google Scholar 

  • Yoerger DR, Kelley DS, Delaney JR (2000) Fine-scale three-dimensional mapping of a deep-sea hydrothermal vent site using the Jason ROV system. Int J Robot Res 19(11):1000–1014

    Google Scholar 

  • Yoerger DR, Jakuba M, Bradley AM, Bingham B (2007) Techniques for deep sea near bottom survey using an autonomous underwater vehicle. Int J Robot Res 26(1):41–54

    Article  Google Scholar 

  • Zhou C, Nayar SK (2011) Computational cameras: convergence of optics and processing. IEEE Trans Image Process 20(12):3322–3340

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the support from the University of Sydney and the IMOS AUV Facility including past and present technical officers and operations team of this facility. Development of the University of Puerto Rico SeaBED AUV was funded by NSF MRI grant OCE-0722815 to R. Armstrong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy A. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armstrong, R.A., Pizarro, O., Roman, C. (2019). Underwater Robotic Technology for Imaging Mesophotic Coral Ecosystems. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_51

Download citation

Publish with us

Policies and ethics