Skip to main content

GRChombo - Code Development and Testing

  • Chapter
  • First Online:
Scalar Fields in Numerical General Relativity

Part of the book series: Springer Theses ((Springer Theses))

  • 403 Accesses

Abstract

\(\mathtt {GRChombo}\) is a new multi-purpose numerical relativity code, which is built on top of the open source \(\mathtt {Chombo}\) (Adams et al., Chombo software package for AMR applications - Design Document, Lawrence Berkeley National Laboratory technical report LBNL-6616E, [1]) framework. In this chapter, we will detail the capabilities of \(\mathtt {GRChombo}\) and illustrate how they expand the current field in numerical GR to permit new physics to be explored. The design methodology, scaling properties and performance of \(\mathtt {GRChombo}\) in a number of standard simulations are included. Videos of simulations using \(\mathtt {GRChombo}\) can be viewed via the website at www.grchombo.org. The work presented in this chapter is mainly derived from the paper “GRChombo: Numerical Relativity with Adaptive Mesh Refinement” (Clough et al., Class Quantum Gravity 32(24):245011, 2015, [2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ghost cells are the outer boundary cells of the boxes, which must be exchanged between processors working in different regions.

  2. 2.

    Properly nested means that (1) a \(l+1\) level cell must be separated from an \(l-1\) cell by at least a single l level cell and (2) the physical region corresponding to a \(l-1\) level cell must be completely filled by l cells if it is refined, or it is completely unrefined (i.e. there cannot be “half-refined” coarse cells).

  3. 3.

    Something of order 64 grid points should in practise be sufficient.

References

  1. M. Adams, P. Colella, D.T. Graves, J.N. Johnson, N.D. Keen, T.J. Ligocki, D.F. Martin, P.W. McCorquodale, D. Modiano, P.O. Schwartz, T.D. Sternberg, B. Straalen, Chombo Software Package for AMR Applications - Design Document, Lawrence Berkeley National Laboratory Technical Report LBNL-6616E

    Google Scholar 

  2. K. Clough, P. Figueras, H. Finkel, M. Kunesch, E.A. Lim, S. Tunyasuvunakool, GRChombo: numerical relativity with adaptive mesh refinement. Class. Quantum Gravity 32(24), 245011 (2015), arXiv:1503.03436 [gr-qc]. [Class. Quantum Gravity 32, 24 (2015)]

    Article  ADS  Google Scholar 

  3. M. Babiuc, S. Husa, D. Alic, I. Hinder, C. Lechner et al., Implementation of standard testbeds for numerical relativity. Class. Quantum Gravity 25, 125012 (2008). arXiv:0709.3559 [gr-qc]

    Article  ADS  Google Scholar 

  4. M. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  ADS  Google Scholar 

  6. M.J. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation. IEEE Trans. Syst. Man Cyber. 21, 1278–1286 (1991)

    Article  Google Scholar 

  7. Tutorials Point: C++ Tutorial, https://www.tutorialspoint.com/cplusplus/

  8. B. Stroustrup, The C++ Programming Language (Pearson Education, 2013). https://books.google.co.uk/books?id=PSUNAAAAQBAJ

  9. M. Campanelli, C. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006), arXiv:gr-qc/0511048 [gr-qc]

  10. J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006), arXiv:gr-qc/0511103 [gr-qc]

  11. Y. Zlochower, J. Baker, M. Campanelli, C. Lousto, Accurate black hole evolutions by fourth-order numerical relativity. Phys. Rev. D 72, 024021 (2005), arXiv:gr-qc/0505055 [gr-qc]

  12. H.-O. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D. Pollney et al., Gauge conditions for long term numerical black hole evolutions without excision. Phys. Rev. D 67, 084023 (2003), arXiv:gr-qc/0206072 [gr-qc]

  14. T. Baumgarte, S. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010). https://books.google.co.uk/books?id=dxU1OEinvRUC

  15. J. Thornburg, A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity. Class. Quantum Gravity 21, 743–766 (2004), arXiv:gr-qc/0306056 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  16. V. Cardoso, L. Gualtieri, C. Herdeiro, U. Sperhake, Exploring new physics frontiers through numerical relativity, arXiv:1409.0014 [gr-qc]

  17. M. Alcubierre, Introduction to 3+1 Numerical Relativity. International Series of Monographs on Physics (Oxford University Press, Oxford, 2008). https://books.google.co.uk/books?id=8IJCmQEACAAJ

  18. D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85, 064040 (2012). arXiv:1106.2254 [gr-qc]

    Article  ADS  Google Scholar 

  19. Z. Cao, D. Hilditch, Numerical stability of the Z4c formulation of general relativity. Phys. Rev. D 85, 124032 (2012). arXiv:1111.2177 [gr-qc]

    Article  ADS  Google Scholar 

  20. M. Hannam, S. Husa, F. Ohme, B. Bruegmann, N. O’Murchadha, Wormholes and trumpets: the Schwarzschild spacetime for the moving-puncture generation. Phys. Rev. D 78, 064020 (2008). arXiv:0804.0628 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  21. S.R. Brandt, E. Seidel, The evolution of distorted rotating black holes. 3: initial data. Phys. Rev. D54, 1403–1416 (1996). arXiv:gr-qc/9601010 [gr-qc]

  22. D.R. Brill, R.W. Lindquist, Interaction energy in geometrostatics. Phys. Rev. 131, 471–476 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Loffler et al., The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics. Class. Quantum Gravity 29, 115001 (2012). arXiv:1111.3344 [gr-qc]

    Article  ADS  Google Scholar 

  24. U. Sperhake, Binary black-hole evolutions of excision and puncture data. Phys. Rev. D 76, 104015 (2007), arXiv:gr-qc/0606079 [gr-qc]

  25. M. Zilhao, H. Witek, U. Sperhake, V. Cardoso, L. Gualtieri, C. Herdeiro, A. Nerozzi, Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests. Phys. Rev. D 81, 084052 (2010). arXiv:1001.2302 [gr-qc]

    Article  ADS  Google Scholar 

  26. Cactus Computational Toolkit, http://www.cactuscode.org/

  27. E. Schnetter, S.H. Hawley, I. Hawke, Evolutions in 3-D numerical relativity using fixed mesh refinement. Class. Quantum Gravity 21, 1465–1488 (2004), arXiv:gr-qc/0310042 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  28. Carpet: Adaptive Mesh Refinement for the Cactus Framework, http://www.carpetcode.org/

  29. The Einstein Toolkit, http://einsteintoolkit.org/

  30. M. Ansorg, B. Bruegmann, W. Tichy, A Single-domain spectral method for black hole puncture data. Phys. Rev. D 70, 064011 (2004), arXiv:gr-qc/0404056 [gr-qc]

  31. J. Thornburg, Finding apparent horizons in numerical relativity. Phys. Rev. D54, 4899–4918 (1996). arXiv:gr-qc/9508014 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy Clough .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clough, K. (2018). GRChombo - Code Development and Testing. In: Scalar Fields in Numerical General Relativity. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-92672-8_3

Download citation

Publish with us

Policies and ethics