Skip to main content

Sponge Biosilica- Perfectionism in Glass

  • Chapter
  • First Online:
Marine Biological Materials of Invertebrate Origin

Part of the book series: Biologically-Inspired Systems ((BISY,volume 13))

  • 934 Accesses

Abstract

Skeletons of only marine hexactinellids (glass sponges) display an amazing amount of sizes, complexity and diversity due to their ability to produce silica-based spicules of triaxonic (cubic) and mostly hexactinic symmetry. These structural repetitive motifs are to be found in up to 2 m large and highly hierarchical structured skeletons of selected hexactinellid species. Recent data confirmed, however, the presence of crystalline phases of calcium carbonates origin within glassy spicules of some hexactinellids. Hexactinnelds are still in trend as objects of investigations which are carried out by experts in materials science, architecture, photonics and biomimetics oriented scientific directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Camacho JM, McCormack GP (2019) Silicatein expression in Haliclona indistincta (Phylum Porifera, Order Haplosclerida) at different developmental stages. Dev Genes Evol 229(1):35–41

    Article  CAS  Google Scholar 

  • Aizenberg J, Weaver JC, Thanawala MS et al (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  CAS  Google Scholar 

  • Austin W, Conway K (2007) Growth and morphology of a reef-forming glass sponge, Aphrocallistes vastus (Hexactinellida), and implications for recovery from widespread trawl damage. In: Porifera research, pp 139–145

    Google Scholar 

  • Bavestrello G, Bonito M Sarà M (1993) Influence of depth on the size of sponge spicules. Uriz MJ Rützler K, Recent advances in ecology and systematics of sponges Barcelona: Scientia Marina 57(4):415–420

    Google Scholar 

  • Bergquist PR (1978) Sponges. Hutchinson & Co., Ltd., London

    Google Scholar 

  • Botting J, Butterfield NJ (2005) Reconstructing early sponge relationships by using the burgess shale fossil Eiffelia globosa, Walcott. Proc Natl Acad Sci USA 102:1554–1559

    Article  CAS  Google Scholar 

  • Boury-Esnault N, Rutzler K (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55

    Article  Google Scholar 

  • Brunner E, Richthammer P, Ehrlich H et al (2009) Chitin-based organic networks—an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed 48:9724–9727

    Article  CAS  Google Scholar 

  • Bütschli O (1901) Einige Beobachtungen über Kiesel- und Kalknadeln von Spongien. Z Wiss Zool 64:235–286

    Google Scholar 

  • Cavalier-Smith T (2017) Origin of animal multicellularity: precursors, causes, consequences—the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Phil Trans R Soc B 372:20150476

    Article  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y et al (1999) Silicate in filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  CAS  Google Scholar 

  • Conway KW, Barrie JV, Krautter M (2004) Modern siliceous sponge reefs in a turbid, siliciclastic setting: Fraser River delta, British Columbia, Canada. N Jb Geol Paläont Monats 6:335–350

    Google Scholar 

  • Conway KW, Krautter M, Barrie JV et al (2001) Hexactinellid sponge reefs on the Canadian continental shelf: a unique ‘living fossil’. Geosci Can 28(2):71–78

    Google Scholar 

  • Conway KW, Krautter M, Barrie JV et al (2005) Sponge reefs in the queen Charlotte Basin, Canada: controls on distribution, growth and development. In: Freiwald A, Roberts JM (eds) Cold water corals and ecosystems. Springer, Berlin

    Google Scholar 

  • Dayton PK (1979) Observations of growth, dispersal and population dynamics of some sponges in McMurdo sound, Antarctica. In: Lévi C, Boury-Esnault N (eds) Colloques internationaux du C.N.R.S. 291, Biologie des spongiaires. Éitions du Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT et al (1974) Biological accommodation in the benthic community at the McMurdo Sound, Antarctica. Ecol Monogr 44:105–128

    Article  Google Scholar 

  • De Vos L, Rützler K, Boury-Esnault N et al (1991) Atlas of sponge morphology. Smithonian Institution Press, Washington, D.C.

    Google Scholar 

  • Eckert C, Schröder HC, Brandt D et al (2006) A histochemical and electron microscopic analysis of the demosponge Suberites domuncula. J Histochem Cytochem 54:1031–1040

    Article  CAS  Google Scholar 

  • Ehrlich H, Worch H (2007) Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: Custodio MR, Lobo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation & sustainability. Museu Nacional, Brasil

    Google Scholar 

  • Ehrlich H, Heinemann S, Heinemann C et al (2008a) Nanostructural organization of naturally occuring composites. Part I. Silica-collagen-based biocomposites. J Nanomater. https://doi.org/10.1155/2008/623838

  • Ehrlich H, Janussen D, Simon P et al (2008b) Nanostructural organisation of naturally occuring composites: part II. Silica-chitin-based biocomposites: J Nanomater. https://doi.org/10.1155/2008/670235

  • Ehrlich H, Krautter M, Hanke T et al (2007) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool (Mol Dev Evol) 308B:473–483

    Article  CAS  Google Scholar 

  • Ehrlich H, Brunner E, Simon P, Bazhenov VV et al (2011) Calcite reinforced silica-silica joints in the biocomposite skeleton of the deep-sea glass sponge. Adv Funct Mater 21:3473–3481

    Article  CAS  Google Scholar 

  • Ehrlich H, Deutzmann R, Capellini E, Koon H et al (2010) Mineralization of the meter-long biosilica structures of glass sponges is template on hydroxylated collagen. Nat Chem 2:1084–1088

    Article  CAS  Google Scholar 

  • Ehrlich H, Maldonado M, Parker AR, Kulchin YN, Schilling J, Köhler B, Skrzypczak U, Simon P, Reiswig HM, Tsurkan MV et al (2016) Supercontinuum generation in naturally occurring glass sponges spicules. Adv Opt Mater 4:1608–1613

    Article  CAS  Google Scholar 

  • Ellwood MJ, Kelly M, de Forges BR (2007) Silica banding in the deep-sea lithistid sponge Corallistes undulatus: investigating the potential influence of diet and environment on growth. Limnol Oceanogr 52(5):1865–1873

    Article  CAS  Google Scholar 

  • Erpenbeck D, Breeuwer JAJ, Parra-Velandia FJ et al (2006) Speculation with spiculation?―three independent gene fragments and biochemical characters versus morphology in demosponge higher classification. Mol Phylogenet Evol 38:293–305

    Article  CAS  Google Scholar 

  • Fairhead M, Johnson KA, Kowatz T et al (2008) Crystal structure and silica condensing activities of silicatein a–cathepsin L chimeras. Chem Commun:1765–1767

    Google Scholar 

  • Garrone R (1969) Collagène, spongine et squelette minéral chez l’éponge Haliclona rosea (O.S.) (Démosponge, Haploscléride). J Microsc 8:581–598

    CAS  Google Scholar 

  • Garrone R, Simpson TL, Pottu J (1981) Ultrastructure and deposition of silica in sponges. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, New York

    Google Scholar 

  • Gatti S (2002) High Antarctic carbon and silicon cyling – how much do sponges contribute? VI International sponge conference. In: Book of Abstracts, Bollettino dei Musei Instituti Biologici, University of Genoa 66–67:76

    Google Scholar 

  • Hecky RE, Mopper K, Kilham P et al (1973) The amino acid and sugar composition of diatom cell walls. Mar Biol 19:323–331

    Article  CAS  Google Scholar 

  • Heezen BC, Schneider ED, Pilkey OH (1966) Sediment transport by the Antarctic bottom current on the Bermuda rise. Nature 211:611

    Article  Google Scholar 

  • Hooper JA, van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Hooper JNA, Kennedy JA, Quinn RJ (2002) Biodiversity ‘hotspots’, patterns of richness and endemism and taxonomic affinities of tropical Australian sponges (Porifera). Biodivers Conserv 11:851–885

    Article  Google Scholar 

  • Iijima I (1901) Studies on the Hexactinellida : contribution I. (Euplectellidae) (1901). Imperial University of Tokyo, Tokyo

    Google Scholar 

  • Iijima M, Moriwaki Y (1990) Orientation of apatite and organic matrix in Lingula unguis Shell. Calcif Tissue Int 47:237–242

    Article  CAS  Google Scholar 

  • Janussen D, Tabachnick KR, Tendal OS (2004) Deep-sea Hexactinellida (Porifera) of the Weddell Sea. Deep-Sea Res II 51:1857–1882

    Article  Google Scholar 

  • Kelly M (2000) Description of a new lithistid sponge from northeastern New Zealand and consideration of the phylogenetic affinities of families Corallistidae and Neopeltidae. Zoosystema 22:265–283

    Google Scholar 

  • Kelly M (2003) Revision of the sponge genus Pleroma sollas (Lithistida: Megamorina: Pleromidae) from New Zealand and New Caledonia, and description of a new species. NZ J Mar Freshw Res 37:113–127

    Article  Google Scholar 

  • Koltun VM (1968) Spicules of sponges as an element of bottom sediments in the Antarctic, SCAR Symp. Antarctic Oceanography. Scott Polar Research Institute, Cambridge, UK

    Google Scholar 

  • Kozhemyako VB, Veremeichik GN, Shkryl YN et al (2009) Silicatein genes in spicule-forming and nonspicule-forming Pacific demosponges. Mar Biotechnol. https://doi.org/10.1007/s10126-009-9225-y

  • Krautter M, Conway KW, Barrie JV (2006) Recent hexactinosidan sponge reefs (silicate mounds) off British Columbia, Canada: frame-building processes. J Paleontol 80(1):38–48

    Article  Google Scholar 

  • Krautter M, Conway KW, Barrie JV et al (2001) Discovery of a ‘living dinosaur’: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies 44:265–282

    Article  Google Scholar 

  • Lehnert H, Conway KW, Barrie JV et al (2005) Desmacella austini sp. nov. from sponge reefs off the Pacific coast of Canada. Contrib Zool 74(3/4):265–270

    Article  Google Scholar 

  • Lévi C (1973) Systématique de la classe des Demospongiaria (Démosponges). In: Grasse´ P (ed) Spongiaires. Traité de Zoologie 3(1). Masson, Paris

    Google Scholar 

  • Lévi C (1991) Lithistid sponges from the Norfolk rise. Recent and Mesozoic genera. In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer, Berlin

    Google Scholar 

  • Lévi C (1993) Porifera Demospongiae: Spongiaires bathyaux de Nouvelle-Caledonie, récoltés par le ‘Jean Charcot’ Campagne BIOCAL, 1985. In: Crosnier A (ed), Résultats des Campagnes MUSORSTROM, 11. Mémoire du Muséum National d’Histoire Naturelle, (A)

    Google Scholar 

  • Lévi C, Barton JL, Guillemet C et al (1989) A remarkably strong natural glassy rod: the anchoring spicule of the Monoraphis sponge. J Mater Sci Lett 8:337–339

    Article  Google Scholar 

  • Leys SP (2003) Comperative study of spiculogenesis in demosponge and hexactinellid larvae. Microsc Res Technol 62:300–311

    Article  CAS  Google Scholar 

  • Maldonado M, Riesgo A (2007) Intra-epithelial spicules in a homosclerophorid sponge. Cell Tissue Res 328:639–650

    Article  Google Scholar 

  • Matzke EB (1935) Modelling the orthic tetrakaidecahedron. Torreya 31:129–135

    Google Scholar 

  • Mehl D (1992) Die Entwicklung der Hexactinellida seit dem Mesozoikum: Paläobiologie, Phylogenie und Evolutionsökologie. Berl Geowiss Abh E 2:1–164

    Google Scholar 

  • Minchin EA (1909) Sponge-spicules. Ergebn Fortschr Zool 2:171–274

    Google Scholar 

  • Morrow C, Cárdenas P (2015) Proposal for a revised classification of the Demospongiae (Porifera). Front Zool 12:1–27

    Article  Google Scholar 

  • Müller WEG, Belikov SI, Tremel W et al (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120

    Article  CAS  Google Scholar 

  • Müller WEG, Boreiko A, Wang X et al (2007) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71

    Article  CAS  Google Scholar 

  • Müller WEG, Rothenberger M, Boreiko A et al (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    Article  Google Scholar 

  • Müller WEG, Wang X, Kropf K et al (2008) Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monoraphis. J Struct Biol 161:188–203

    Article  CAS  Google Scholar 

  • Nichols S, Wörheide G (2005) Sponges: new views of old animals. Integr Comp Biol 45:333–334

    Article  Google Scholar 

  • Ogasawara W, Shenton W, Davis SA et al (2000) Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chem Mater 12(10):2835–2837

    Article  CAS  Google Scholar 

  • Okada Y (1928) On the development of a Hexactinellid sponge, Farrea sollasi. J Fac Sci Imp Univ Tokyo Sect. 4, Zool 2:1–27

    Google Scholar 

  • Ozaki M, Sakashita S, Hamada Y, Usui K (2018) Peptides for silica precipitation: amino acid sequences for directing mineralization. Protein Pept Lett 25(1):15–24

    Article  CAS  Google Scholar 

  • Ozin GA (1997) Morphogenesis of biomineral and morphosynthesis of biomimetic forms. Acc Chem Res 30:17–27

    Article  CAS  Google Scholar 

  • Pearce P (1978) Structure in nature is a strategy for design. MIT Press, Cambridge, MA

    Google Scholar 

  • Pisera A (2003) Some aspects of silica deposition in lithistid demosponge desmas. Microsc Res Tech 62:312–326

    Article  CAS  Google Scholar 

  • Pisera A (2006) Palaeontology of sponges—a review. Can J Zool 84:242–261

    Article  Google Scholar 

  • Povarova NV, Barinov NA, Baranov MS, Markina NM et al (2018) Efficient silica synthesis from tetra(glycerol)orthosilicate with cathepsin- and silicatein-like proteins. Sci Rep 8(1):16759

    Article  CAS  Google Scholar 

  • Reiswig HM (1971) The axial symmetry of sponge spicules and its phylogenetic significance. Cah Biol Mar 12:505–514

    Google Scholar 

  • Reiswig HM (2002a) Class Hexactinellida Schmidt, 1870. In: Hooper JNA, van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Reiswig HM (2002b) Family Farreidae gray, 1872. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Reitner J (2004) Sponges- a geobiological approach. Integr Comp Biol 43(6):989

    Google Scholar 

  • Riesgo A, Maldonado M, López-Legentil S, Giribet G (2015) A proposal for the evolution of Cathepsin and Silicatein in sponges. J Mol Evol 80(5–6):278–291

    Article  CAS  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M et al (2006) Coexpression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281(17):12001–12009

    Article  CAS  Google Scholar 

  • Schröder HC, Perovic´-Ottstadt S, Rothenberger M et al (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673

    Article  Google Scholar 

  • Schulze FE (1886) Über den Bau und das System der Hexactinelliden. Abh Königlichen Preuss Akad Wiss Berlin (Phys-Math Cl):3–97

    Google Scholar 

  • Schulze FE (1904) Hexactinellida. Wiss Ergebnisse Dtsch Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899 4:1–266

    Google Scholar 

  • Schulze FE, v Lendenfeld R (1889) Die Bezeichnung der Spongiennadeln. Georg Reimer, Berlin

    Google Scholar 

  • Schumacher MA, Mizuno K, Bachinger HP (2006) The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J Biol Chem 281:27566–27574

    Article  CAS  Google Scholar 

  • Schuster A (2017) Molecular paleobiology of ‘lithistid’ demosponges. PhD Thesis, LMU München

    Google Scholar 

  • Schwartz K (1973) A bound form of silicon in glucosaminoglycans and polyuronides. Proc Natl Acad Sci USA 70:1608–1612

    Article  Google Scholar 

  • Shimizu K, Amano T, Bari MR, Weaver JC, Arima J, Mori N (2015) Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proc Natl Acad Sci USA 112(37):11449–11454

    Article  CAS  Google Scholar 

  • Shimizu K, Cha JH, Stucky GD et al (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  CAS  Google Scholar 

  • Shimizu K, Morse DE (2018) Silicatein: a unique silica-synthesizing catalytic triad hydrolase from marine sponge skeletons and its multiple applications. Methods Enzymol 605:429–455

    Article  CAS  Google Scholar 

  • Simpson TL (1968) The structure and function of sponge cells: new criteria for the taxonomy of Poecilosclerid sponges (Demospongiae). Peabody Mus Nat Hist (Yale Univ) 25:1–141

    Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin

    Book  Google Scholar 

  • Simpson TL (1990) Recent data on pattern of silicification and the origin of monaxons from tetraxons. In: Rützler K (ed) New perspectives in sponge biology. 3rd International Conference on the Biology of Sponges. Smithsonian Institution Press, Washington, DC, p 1985

    Google Scholar 

  • Simpson TL, Vaccaro CA (1974) An ultrastructural study of silica deposition in the fresh water sponge Spongilla lacustris. J Ultrastr Res 47:296–309

    Article  CAS  Google Scholar 

  • Sollas WJ (1885) Scientif proceed Roy Dublin Soc (N.S.), IV, pp 374–392

    Google Scholar 

  • Sollas WJ (1888) Report on Tetractinellida collected by H.M.S. challenger during the years 1873–1876. Report of the scientific results of the voyage of the H.M.S. challenger. Zoology 5:1–458

    Google Scholar 

  • Tabachnick K, Menshenina L, Pisera A, Ehrlich H (2011) The Hexactinellid genus Aspidoscopulia Reiswig 2002 (Porifera: Hexactinellida: Farreidae) with remarks on branching and metamery. Zootaxa 2883:1–22

    Article  Google Scholar 

  • Tabachnick KR (2002) Family Monorhaphididae Ijima, 1927. In: Hooper NAV, Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer Academic Publishers, New York

    Google Scholar 

  • Tabachnick KR, Reiswig HM (2002) Dictionary of Hexactinellida. In: Hooper JNA, van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Tabachnick K, Janussen D, Menschenina L (2017) Cold biosilicification in metazoan: psychrophilic glass sponges. In: Ehrlich H (ed) Extreme biomimetics. Springer International Publishing, Cham, pp 53–80

    Chapter  Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Thompson DW (1992) On growth and form, complete, revised edn. Dover Publications, New York

    Book  Google Scholar 

  • Tilburey GE, Patwardhan SV, Huang J et al (2007) Are hydroxyl-containing biomolecules important in biosilicification? A model study. J Phys Chem B 111:4630–4638

    Article  CAS  Google Scholar 

  • Uriz M-J (2006) Mineral skeletogenesis in sponges. Can J Zool 84:322–356

    Article  CAS  Google Scholar 

  • Uriz M-J, Turon X, Becero MA et al (2003) Siliceous spicules and skeletal frameworks in sponges: origin, Diversità, ultrastructural patterns, and biological functions. Microsc Res Technol 62:279–299

    Article  CAS  Google Scholar 

  • Uriz MJ, Turon X, Becerro MA (2000) Silica deposition in Demospongiae: spiculogenesis in Crambe crambe. Cell Tissue Res 301:299–309

    Article  CAS  Google Scholar 

  • Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M et al (2012) Global diversity of sponges (Porifera). PLoS One 7:e35105

    Article  CAS  Google Scholar 

  • Vosmaer GCJ, Wijsman HP (1905) On the structure of some siliceous spicules of Sponges.I. the styli of Tethya lyncurium. K Ned Akad Wet Proc 8:15–28

    Google Scholar 

  • Wagner D, Kelley CD (2017) The largest sponge in the world? Mar Biodivers 47:367–368

    Article  Google Scholar 

  • Wang X, Schloßmacher U, Wiens M, Batel R, Schröder HC, Müller WEG (2018) Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules. FEBS J 285(7):1373

    Article  CAS  Google Scholar 

  • Wang XH, Schröder HC, Müller WEG (2009) Giant silliceous spicules from the deep-sea glass sponge Monorhaphis chuni: morphology, biochemistry, and molecular biology. Int Rev Cell Mol Biol 273:69–115

    Article  CAS  Google Scholar 

  • Weaver JC, Aizenberg J, Fantner GE et al (2007) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J Struct Biol 158:93–106

    Article  CAS  Google Scholar 

  • Weaver JC, Morse DE (2003) Molecular biology of demosponge axial filaments and their role in biosilicification. Microsc Res Tech 62:356–367

    Article  CAS  Google Scholar 

  • Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süsswasserschwämme (Spongillidae). Fischer, Stuttgart

    Google Scholar 

  • Weissenfels N, Landschoff HW (1977) Bau und Funktion des Süsswasserschwamms Ephydatia fluviatilis L. (Porifera). IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen. Zool Jahrbiicher Abt Anat Ontogenese Tiere 98:355–371

    Google Scholar 

  • Wysokowski M, Jesonowski T, Ehrlich H (2018) Biosilica as a source for inspiration in biological materials science. Am Mineral. https://doi.org/10.2138/am-2018-6429

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehrlich, H. (2019). Sponge Biosilica- Perfectionism in Glass. In: Marine Biological Materials of Invertebrate Origin. Biologically-Inspired Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-92483-0_7

Download citation

Publish with us

Policies and ethics