Skip to main content

The Development of the Bony Skull

  • Chapter
  • First Online:
Head and Neck

Abstract

This chapter treats the development of the bony neurocranium and the bony viscerocranium, and it runs from genetics to the three-dimensional enlargement of bony centres. The construction of head and neck, in fact of the whole body, is organized by the most conservative genes, called Hox genes. The fly Drosophila (the small red-eyed flies on your fruit) uses the same genes. In humans, these genes are employed to make the segmental borders in our body. Since the head exists of a fusing of several segments, the knowledge of the Hox genes clarified their borders. In the growth process, structures of head and neck are produced by mesoderm, neural crest and placodes, which ask for a thorough description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • van Adrichem NLA, Hoogeboom AJM, Wolvius EB (2008) Genetica van de ontwikkeling van schedel en aangezicht. Ned Tijdschr Tandheelkd 115:61–68

    PubMed  Google Scholar 

  • Baker CVH, Bronner-Fraser M (2001) Vertebrate cranial placodes. Part I. Embryonic induction. Dev Biol 232:1–61

    Article  CAS  Google Scholar 

  • Batalle D, Eixarch E, Figueras F, Munoz-Mureno E, Bargallo N, Illa M, Acosta-Rojas R, Amat-Roldan I, Gratacos E (2012) Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome. NeuroImage 60:1352–1366

    Article  Google Scholar 

  • Bock WJ (1960) Secondary articulation of the avian mandible. Auk 77:19–55

    Article  Google Scholar 

  • Bolk L (1910) De segmentale innervatie van romp en ledematen bij den mensch. De Erven Bohn, Haarlem

    Google Scholar 

  • Buffetaut E (2002) Cuvier, Le découvreur de mondes disparus. Pour la Science, Paris

    Google Scholar 

  • Chandebois R, Faber J (1983) Automation in animal development. A new theory derived from the concept of cell sociology. In: Wolsky A (ed) Monographs in developmental biology, vol 16. Karger, Basel

    Google Scholar 

  • Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 311:79–83

    Article  Google Scholar 

  • Dongen Van PAM (1998) Brain size in vertebrates. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 3. Springer, Berlin, pp 2099–2134

    Google Scholar 

  • Dullemeijer P (1974) Concepts and approaches in animal morphology. Van Gorcum Comp, Assen, The Netherlands

    Google Scholar 

  • Epstein HT (1974) Phrenoblysis: special brain and mind growth periods: I. Human brain and skull development. Dev Psychobiol 7:207–216. https://doi.org/10.1002/dev.420070304

    Article  CAS  PubMed  Google Scholar 

  • Epstein HT (1986) Stages in human brain development. Dev Brain Res 30:114–119

    Article  Google Scholar 

  • Epstein HT (1999) Stages of increased cerebral blood-flow accompany stages of rapid brain growth. Brain Dev 21:535–539

    Article  CAS  Google Scholar 

  • Epstein HT, Epstein EB (1978) The relationship between brain weight and head circumference from birth to age 18 years. Am J Phys Anthropol 48:471–474

    Article  CAS  Google Scholar 

  • Francis-West PH, Robson L, Evans DJR (2003) Craniofacial development: the tissue and molecular interactions that control development of the head. Adv Anat Embryol Cell Biol 169:1–144

    Article  Google Scholar 

  • Gans C (1988) Craniofacial growth, evolutionary questions. Development 103:s3–s15

    Google Scholar 

  • Goedbloed JF (1976) The embryonic and postnatal growth of rat and mouse. IV. Prenatal growth of organs and tissues: age determination and general growth pattern. Acta Anat 95:8–33

    Article  CAS  Google Scholar 

  • Goedbloed JF (1977) The embryonic and postnatal growth of rat and mouse. V. Prenatal growth of organs and tissues, general principles: allometric growth, absence of growth, and genetic regulation of the growth process. Acta Anat 98:162–182

    Article  CAS  Google Scholar 

  • Goedbloed JF (1980) The embryonic and postnatal growth of rat and mouse. VI. Prenatal growth of organs and tissues: age determination and general growth pattern. Acta Anat 106:108–128

    Article  CAS  Google Scholar 

  • Goedbloed JF, Smits-van Prooije AE (1986) Quantitative analysis of the temporal pattern of somite formation in the mouse and rat. A simple and accurate method for age determination. Acta Anat 125:76–82 cat

    Article  CAS  Google Scholar 

  • Gribnau AAM, Geijsberts LGM (1985) Morphogenesis of the brain in staged Rhesus monkey embryos. Adv Anat Embryol Cell Biol 91:1–63

    Article  CAS  Google Scholar 

  • Hamilton WJ, Boyd JD, Mossman HW (1959) Human embryology. Heffer, Cambridge

    Google Scholar 

  • Herlin C, Largey A, deMattei C, Daures JP, Bigorre M, Captier G (2011) Modeling of the human fetal skull base growth: Interest in new volumetrics morphometric tools. Early Hum Dev 87:239–245

    Article  Google Scholar 

  • Hills PJ, Pake JM (2013) Eye-tracking the own-race bias in face recognition: revealing the perceptual and socio-cognitive mechanisms. Cognition 129:586–597

    Article  Google Scholar 

  • Hollyday M (1980) Organization of motorpools in the chick lumbar lateral column. J Comp Neurol 194:143–170

    Article  CAS  Google Scholar 

  • Keynes RJ, Stern CD (1984) Segmentation in the vertebrate nervous system. Nature 310:786–789

    Article  CAS  Google Scholar 

  • Klaauw van der CJ (1941) Skelet en spieren van den kop. In: Ihle JEW (ed) Leerboek der vergelijkende ontleedkunde van de vertebraten, sec. ed. I, ch V. Oosthoek’s Uitgevers, Utrecht, pp 223–280

    Google Scholar 

  • Kuriyama S, Mayor R (2008) Molecular analysis of neural crest migration. Phil Trans R Soc B 363:1349–1362

    Article  Google Scholar 

  • Lakke EAJF (1997) The projections to the spinal cord of the rat during development: a time-table of descent. Adv Anat Embryol Cell Biol 135:143

    Google Scholar 

  • Lakke EAJF, van der Veeken JGPM, Mentink MMT, Marani E (1988) A SEM study on the development of the ventricular surface morphology in the diencephalon of the rat. Anat Embryol 179:73–80

    Article  CAS  Google Scholar 

  • Landmesser L (1978) The distribution of motoneurons supplying chick hindlimb muscles. J Physiol 284:371–389

    Article  CAS  Google Scholar 

  • Lanz and Wachsmuth (1938) Praktische Anatomie: Bein und Statik. Springer, Berlin, Heidelberg, NY

    Google Scholar 

  • von Lanz T, Wachsmuth W (1979) Kopf-Gehirn- und Augenschädel: Kopf Teil Ib. Springer, Berlin

    Google Scholar 

  • van Limborgh J (1967) Enige beschouwingen over de regeling van de embryonale schedelontwikkeling. Klin Lessen: Ned T Geneesk 111:1693–1698

    Google Scholar 

  • Lozanoff S, Doll S, Hallgrimsson B, Neufeld E (2004) Prenatal growth in the interorbital septum in Macca mulatta. Acta Anat 186:435–442

    Google Scholar 

  • van der Meulen JC, Mazzola R, Stricker M, Raphael B (1990) Classification of craniofacial malformations. In: Stricker M, van der Meulen JC, Raphael B, Mazzola R, Tolhurst DE (eds) craniofacial malformations. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Meyers PZ (1985) Spinal motorneurons of the larval zebrafish. J Comp Neurol 236:555–561

    Article  Google Scholar 

  • Minkowski M (1920) Ueber Bewegungen und Reflexe des menschlichen Foetus während der ersten Hälfte seiner Entwicklung. Schweizer Archiv fuer Neurologie und Psychiatrie Band VII, Heft 1. 1921

    Google Scholar 

  • Minkowski M (1921) Sur les mouvements, les réflexes et les reactions musculaires du foetus humain de 2 à 5 mois et leurs relations avec le système nerveux foetal. Revue neurologique. Conférence Neurologigique Paris 7:1105–1118 et 1235–1250

    Google Scholar 

  • Noden DM (1991) Vertebrate craniofacial development: the relation between ontogenetic process and morphological outcome. Brain Behav Evol 38:190–225

    Article  CAS  Google Scholar 

  • Otsuka Y, Motoyoshi I, Hill HC, Kobayashi M, Kanazawa S, Yamaguchi MK (2013) Eye contrast polarity is critical for face recognition by infants. J Exp Child Psychol 115:598–606

    Article  Google Scholar 

  • Palmer MA, Brewer N, Horry R (2013) Understanding gender bias in face recognition: effects of divided attention at encoding. Acta Psychol 142:362–369

    Article  Google Scholar 

  • Papez JW (1940) The embryological development of the hypothalamic nuclei in mammals. Res Publ Ass Nerv Ment Dis 20:31–51

    Google Scholar 

  • Rickmann F, Fawcett WJ, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. Embryol Exp Morphol 90:437–455

    CAS  Google Scholar 

  • Romer AS (1962) The vertebrate body. W.B. Saunders Co, Philadelphia, London

    Google Scholar 

  • Rudwick MJS (1997) Georges Cuvier, fossil bones and geological catastrophes. Univ. Chicago Press, Chicago/London

    Book  Google Scholar 

  • Ruigrok TJH (1984) Organization and morphology of motoneurons and primary afferents in the lumbar spinal cord of the turtle Pseudemys scripta elegans. Thesis University Utrecht, The Netherlands

    Google Scholar 

  • Sandfort A, Burton AM (2014) Tolerance for distorted faces: Challenges to a configural processing account of familiar face recognition. Cognition 132:262–268

    Article  Google Scholar 

  • Schumacher GH, Dokladal M (1968) Ueber unterschiedliche Sekundärveränderungen am Schädel als Folge von Kaumuskelresektionen. Acta Anat 69:378–392

    Article  CAS  Google Scholar 

  • Scott JH (1955) Craniofacial regions. Dent Pract 5:206–214

    Google Scholar 

  • Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V Fogarty NME, Campbell A, Devito LG, Ilic D, Khalaf Y, Niakan KK, Fishel S Zernicka-Goetz M (2016) Self-organization of the human embryo in the absence of maternal tissues. Nature Cell Biol 18:700–708

    Article  CAS  Google Scholar 

  • Singer C (1931) A short history of biology. Oxford at the Clarendon Press

    Google Scholar 

  • Smits-van Prooije AE, Poelmann RE, Gesink AF, Chr Vermeij-Keers (1985a) The cell surface coat during closure of the neural tube as revealed by concavalin A. Verh Anat Ges 79:591–592

    Google Scholar 

  • Smits-van Prooije AE, Vermeij-Keers C, Poelmann RE, Mentink MM, Dubbeldam JA (1985b) The neural crest in presomite to 40-somite murine embryos. Acta Morphol Neerl Scand. 23:99–114

    CAS  PubMed  Google Scholar 

  • Smits-van Prooije AE, Chr Vermeij-Keers, Dubbeldam Mentink MMT, Poelmann RE (1987) The formation of mesoderm and mesectoderm in prosomite rat embryos cultured in vitro, using WGA-Au as a marker. Anat Embryol 176:71–77

    Article  CAS  Google Scholar 

  • Smits-van Prooije AE, Chr Vermeij-Keers, Poelmann RE, Mentink MMT, Dubbeldam JA (1988) The formation of mesoderm and mesectoderm in 5- to 41-somite rat embryos cultured in vitro, using WGA-Au as a marker. Anat Embryol 177:245–256

    Article  CAS  Google Scholar 

  • Stern CD (2001) Initial pattering of the central nervous system: how many organizers. Nature Reviews Neurosci 2:92–98

    Article  CAS  Google Scholar 

  • Streit A (2004) Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 276:1–15

    Article  CAS  Google Scholar 

  • Stoessel A, Gunz P, David R, Spoor F (2016) Comparative anatomy of the middle ear ossicles of extant hominids: Introducing a geometric morphometric protocol. J Human Evol 91:1–25

    Article  Google Scholar 

  • Teillet M, Kalcheim C, Le Douarin NM (1987) Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cell. Dev Biol 120:329–347

    Article  CAS  Google Scholar 

  • Tosney K (1978) The early migration of neural crest cells in the trunk region of the avian embryo: An electron microscopic study. Dev Biol 62:317–333

    Article  CAS  Google Scholar 

  • Tosney K (1988) Proximal tissues and patterned neurite outgrowth at the lumbosacral level of chick embryo: partial and complete deletion of the somite. Dev Biol 127:266–286

    Article  CAS  Google Scholar 

  • Verbout AJ (1985) The development of the vertebral column Adv Anat Embryol Cell Biol 90 Springer, Berlin

    Chapter  Google Scholar 

  • Vermeij-Keers C (1990) Craniofacial embryology and morphogenesis: Normal and abnormal. In: Stricker M, van der Meulen JC, Raphael B, Mazzola R, Tolhurst DE (eds) Craniofacial malformations. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Vermey-Keers Chr, Poelmann RE (1980) The neural crest: a study on cell degeneration and the improbability of cell migration in mouse embryos. Neth J Zool 30:74–81

    Google Scholar 

  • Versluys J (1912) Das Streptostylie-Problem und die Bewegungen im Schädel bei Sauropsiden. Zool Jahrb Anat Suppl 152:545–716

    Google Scholar 

  • Weston JA (1963) An autoradiographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev Biol 6:279–310

    Article  CAS  Google Scholar 

  • Young JZ (1974) An introduction to the study of man. Oxford University Press

    Google Scholar 

  • Young JZ (1975) The life of mammals. Their anatomy and physiology. Clarendon Press, Oxford

    Google Scholar 

  • Zang J, Merialdi M, Platt LD, Kramer MS (2010) Defining normal and abnormal fetal growth: promises and challenges. AJOG 202:522–528. https://doi.org/10.1016/j.ajog.2009.10.889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marani, E., Heida, C. (2018). The Development of the Bony Skull. In: Head and Neck. Springer, Cham. https://doi.org/10.1007/978-3-319-92105-1_4

Download citation

Publish with us

Policies and ethics