Skip to main content

Law of Laplace

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstract

The law of Laplace relates transmural pressure with wall stress. In a (cylindrical) blood vessel and in a (spherical) heart model there exists a simple relation between pressure and circumferential wall stress. The law gives the average stress over the wall, thus how the stress varies over the wall cannot be derived. The law holds only for simple geometries, such as cylindrical blood vessels. Cardiac wall stress estimates require more sophisticated models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huisman RM, Sipkema P, Westerhof N, Elzinga G. Comparison of models used to calculate left ventricular wall force. Med Biol Eng Comput. 1980;18:133–44.

    Article  CAS  PubMed  Google Scholar 

  2. Hefner LL, Sheffield LT, Cobbs GC, Klip W. Relation between mural force and pressure in the left ventricle of the dog. Circ Res. 1962;11:654–63.

    Article  CAS  PubMed  Google Scholar 

  3. Mirsky I, Rankin JS. The effects of geometry, elasticity, and external pressures on the diastolic pressure-volume and stiffness-stress relations. How important is the pericardium? Circ Res. 1979;44:601–11. Review.

    Article  CAS  PubMed  Google Scholar 

  4. Arts T, Bovendeerd HHM, Prinzen FW, Reneman RS. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J. 1991;59:93–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, et al. Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg. 2005;27:191–201. Review.

    Article  Google Scholar 

  6. Arts T, Reneman RS, Veenstra PC. A model of the mechanics of the left ventricle. Ann Biomed Eng. 1979;7:299–318.

    Article  CAS  PubMed  Google Scholar 

  7. Love AEH. A treatise on mathematical elasticity. 3rd ed. London & New York: Cambridge University Press; 1952.

    Google Scholar 

  8. Chirinos JA, Segers P, Gupta AK, Swillens A, Rietzschel ER, De Buyzere ML, et al. Time-varying myocardial stress and systolic pressure-stress relationship: role in myocardial-arterial coupling in hypertension. Circulation. 2009;119:2798–807.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M., Westerhof, B.E. (2019). Law of Laplace. In: Snapshots of Hemodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-91932-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91932-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91931-7

  • Online ISBN: 978-3-319-91932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics