Skip to main content

Linking Aboveground–Belowground Ecology: A Short Historical Perspective

  • Chapter
  • First Online:
Aboveground–Belowground Community Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 234))

Abstract

The study of aboveground–belowground interactions has developed rapidly over the last three decades, and it is now a major theme of community and ecosystem ecology. It is now well established that reciprocal interactions between aboveground and belowground communities not only shape the structure and functioning of terrestrial ecosystems, but also they regulate their response to global change across a hierarchy of temporal and spatial scales. In this chapter, I explore the development of this topic over the last 30 or so years, tracing its rise in prominence in community and ecosystem ecology. I first consider how the two historically distinct fields of aboveground and belowground ecology merged during the late 1980s and 1990s and then how the topic developed and consolidated during the early part of the twenty first century. Finally, I consider some of the challenges that lie ahead for aboveground and belowground ecology, especially in the context of global change and the need for sustainable land management strategies for the delivery of multiple ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EB, Allen MF (1990) The mediation of competition by mycorrhizae in successional and patchy environments. In: Grace JB, Tilman D (eds) Perspectives in plant competition. Academic, San Diego, pp 367–389

    Google Scholar 

  • Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Change Biol 14:1156–1168

    Article  Google Scholar 

  • Alphei J, Bonkowski M, Scheu S (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interaction, response of microorganisms and effects on plant growth. Oecologia 106:111–126

    Article  PubMed  Google Scholar 

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545

    Article  CAS  PubMed  Google Scholar 

  • Ayres E, Heath J, Possell M et al (2004) Tree physiological responses to above-ground herbivory directly modify below-ground processes of soil carbon and nitrogen cycling. Ecol Lett 7:469–479

    Article  Google Scholar 

  • Ayres E, Steltzer H, Berg S et al (2009) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912

    Article  CAS  Google Scholar 

  • Barberán A, McGuire KL, Wolf JA et al (2015) Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett 18:1397–1405

    Article  PubMed  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bardgett RD (2017) Plant trait-based approaches for interrogating belowground function. Biol Environ Proc R Irish Acad 117B(1):13

    Google Scholar 

  • Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014

    Article  CAS  Google Scholar 

  • Bardgett RD, Gibson DJ (2017) Plant ecological solutions to global food security. J Ecol 105:859–864

    Article  Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    Article  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground food webs: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878

    Article  CAS  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R et al (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  PubMed  Google Scholar 

  • Bardgett RD, Manning P, Morrien E et al (2013) Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–343

    Article  Google Scholar 

  • Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes CJ, van der Gast CJ, McNamara NP et al (2018) Extreme rainfall affects assembly of the root-associated fungal community. New Phytol. https://doi.org/10.1111/nph.14990

  • Baxendale C, Orwin KH, Poly F et al (2014) Are plant–soil feedback responses explained by plant traits? New Phytol 204:408–423

    Article  PubMed  Google Scholar 

  • Bennett JA, Maherali H, Reinhart KO et al (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977

    Article  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    Article  PubMed  Google Scholar 

  • Blankinship J, Niklaus P, Hungate B (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565

    Article  PubMed  Google Scholar 

  • Blumenthal D, Mitchell CE, Pyšek P et al (2009) Synergy between pathogen release and resource availability in plant invasion. Proc Natl Acad Sci USA 106:7899–7904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman WD, Steltzer H, Rosenstiel TN et al (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344

    Article  Google Scholar 

  • Bradford MA, Jones TH, Bardgett RD et al (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618

    Article  CAS  PubMed  Google Scholar 

  • Bradford MA, Davies CA, Frey SD et al (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  PubMed  Google Scholar 

  • Bradford MA, Wood SA, Bardgett RD et al (2014) Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc Natl Acad Sci USA 111:14478–14483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MA, Veen GC, Bonis A et al (2017) A test of the hierarchical model of litter decomposition. Nat Ecol Evol 1:1836–1845

    Article  PubMed  Google Scholar 

  • Brown VK, Gange AC (1989) Differential effects of above-and below-ground insect herbivory during early plant succession. Oikos 54:67–76

    Article  Google Scholar 

  • Cadisch G, Giller KE (eds) (1997) Driven by nature – plant litter quality and decomposition. CAB International, Wallingford

    Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A et al (2004) Soil biota and exotic plant invasion. Nature 427:731–737

    Article  CAS  PubMed  Google Scholar 

  • Chanway CP, Holl FB, Turkington R (1989) Effect of Rhizobium leguminosarum biovar trifolii genotype on specificity between Trifolium repens and Lolium perenne. J Ecol 77:1150–1160

    Article  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL et al (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA et al (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6:1–21

    Article  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Cole L, Bardgett RD, Ineson P et al (2002) Relationships between enchytraeid worms (Oligochaeta), temperature, and the release of dissolved organic carbon from blanket peat in northern England. Soil Biol Biochem 34:599–607

    Article  CAS  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Cortois R, Schröder-Georgi T, Weigelt A et al (2016) Plant–soil feedbacks: role of plant functional group and plant traits. J Ecol 104:1608–1617

    Article  Google Scholar 

  • De Deyn GB, van der Putten WH (2005) Linking aboveground and belowground ecology. Trends Ecol Evol 20:625–633

    Article  PubMed  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR et al (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  CAS  PubMed  Google Scholar 

  • De Deyn GB, Quirk H, Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Lett 7:75–78

    Article  PubMed  Google Scholar 

  • de Voorde TF, Bezemer TM, Van Groenigen JW et al (2014) Soil biochar amendment in a nature restoration area: effects on plant productivity and community composition. Ecol Appl 24:1167–1177

    Article  PubMed  Google Scholar 

  • De Vries FT, Manning P, Tallowin JRB et al (2012a) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    Article  PubMed  Google Scholar 

  • De Vries FT, Liiri ME, Bjørnlund L et al (2012b) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2:276–280

    Article  Google Scholar 

  • De Vries FT, Thébault E, Liiri M et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci USA 110:14296–14301

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB et al (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokuchaev VV (1883) The Russian Chernozem. Report to the free economic society. Imperial University of St. Petersburg, St. Petersburg

    Google Scholar 

  • Eisenhauer N, Dobies T, Cesarz S et al (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA 110:6889–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelkes T, Morriën E, Verhoeven KJ et al (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–948

    Article  CAS  PubMed  Google Scholar 

  • Ettema C, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Article  Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787

    Article  CAS  Google Scholar 

  • Findlay S, Carreiro M, Krischik V et al (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6:269–275

    Article  Google Scholar 

  • Fischer DG, Chapman SK, Classen AT et al (2014) Plant genetic effects on soils under climate change. Plant Soil 379:1–19

    Article  CAS  Google Scholar 

  • Fortunel C, Garnier E, Joffre R et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611

    Article  PubMed  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ et al (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Article  CAS  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent JL et al (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol Manage 196:159–171

    Article  Google Scholar 

  • Fry EL, Pilgrim ES, Tallowin JRB et al (2017) Plant, soil and microbial controls on grassland diversity restoration: a long-term, multi-site mesocosm experiment. J Appl Ecol 54:1320–1330

    Article  Google Scholar 

  • Gange AC, Brown VK (1989) Effects of root herb-ivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia 81:38–42

    Article  CAS  PubMed  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7:616–622

    Article  Google Scholar 

  • Gange AC, Gange EG, Sparks TH et al (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71–71

    Article  CAS  PubMed  Google Scholar 

  • Gehring CA, Whitham TG (1994) Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends Ecol Evol 9:251–255

    Article  CAS  PubMed  Google Scholar 

  • Gould IJ, Quinton JN, Weigelt A et al (2016) Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol Lett 19:1140–1149

    Article  PubMed  PubMed Central  Google Scholar 

  • Grigulis K, Lavorel S, Krainer U et al (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57

    Article  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH et al (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Article  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:239–244

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F et al (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P et al (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Change Biol 14:1181–1190

    Article  Google Scholar 

  • Hawkes CV, Kivlin SN, Rocca JD et al (2011) Fungal community responses to precipitation. Glob Change Biol 17:1637–1645

    Article  Google Scholar 

  • Hawkes CV, Waring BG, Rocca JD et al (2017) Historical climate controls soil respiration responses to current soil moisture. Proc Natl Acad Sci USA 114:6322–6327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath J, Ayres E, Possell M et al (2005) Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309:1711–1713

    Article  CAS  PubMed  Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M et al (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Heinen R, van der Sluijs M, Biere A et al (2017) Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. J Ecol. https://doi.org/10.1111/1365-2745.12907

    Article  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554

    Article  PubMed  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Hol WH, De Boer W, Termorshuizen AJ et al (2010) Reduction of rare soil microbes modifies plant-herbivore interactions. Ecol Lett 13:292–301

    Article  PubMed  Google Scholar 

  • Holland JN, Cheng W, Crossley DA (1996) Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14. Oecologia 107:87–94

    Article  PubMed  Google Scholar 

  • Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149

    Article  Google Scholar 

  • Hu S, Chapin FS III, Firestone MK et al (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  CAS  PubMed  Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER et al (1987) The detrital food web in a shortgrass prairie. Biol Fertil Soil 3:57–68

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER et al (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  • Isbell F, Adler PR, Eisenhauer N et al (2017) Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol 105:871–879

    Article  Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL et al (1995) Soil protozoa and forest growth: non-nutritional effects and interaction with mycorrhizae. Biol Fertil Soil 20:263–269

    Article  Google Scholar 

  • Jones CG, Lawton JH (eds) (1995) Linking species and ecosystems. Chapman and Hall, New York

    Google Scholar 

  • Jonsson M, Wardle DA (2008) Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. Oikos 117:1674–1682

    Article  Google Scholar 

  • Kaisermann A, Vries FT, Griffiths RI et al (2017) Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol 215:1413–1424

    Article  CAS  PubMed  Google Scholar 

  • Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9:1080–1088

    Article  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Article  Google Scholar 

  • Kulmatiski A (2018) Community-level plant–soil feedbacks explain landscape distribution of native and non-native plants. Ecol Evol 8:2041–2049

    PubMed  PubMed Central  Google Scholar 

  • Kulmatiski A, Beard KH, Stevens JR et al (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  PubMed  Google Scholar 

  • Laakso J, Setälä H (1999) Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87:57–64

    Article  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA 109:14058–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laughlin DC (2011) Nitrification is linked to dominant leaf traits rather than functional diversity. J Ecol 99:1091–1099

    Article  Google Scholar 

  • Lawton JH (1994) What do species do in ecosystems? Oikos 71:367–374

    Article  Google Scholar 

  • Leff JW, Bardgett RD, Wilkinson A et al (2018) Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J 12:1794–1805.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makkonen M, Berg MP, Handa IT et al (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • Manning P, Newington JE, Robson HR et al (2006) Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecol Lett 9:1015–1024

    Article  PubMed  Google Scholar 

  • Mariotte P, Vandenberghe C, Meugnier C et al (2013) Subordinate plant species impact on soil microbial communities and ecosystem functioning in grassland: findings from a removal experiment. Perspect Plant Ecol Evol Syst 15:77–85

    Article  Google Scholar 

  • Mariotte P, Canarini A, Dijkstra FA (2017) Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought. J Ecol 105:958–967

    Article  CAS  Google Scholar 

  • Mariotte P, Mehrabi Z, Bezemer TM et al (2018) Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142

    Article  PubMed  Google Scholar 

  • Masters GJ, Brown VK (1992) Plant-mediated interactions between two spatially separated insects. Funct Ecol 6:175–179

    Article  Google Scholar 

  • Masters GJ, Brown VK, Gange AC (1993) Plant mediated interactions between above- and below-ground insect herbivores. Oikos 66:148–151

    Article  Google Scholar 

  • Mawdsley JL, Bardgett RD (1997) Continuous defoliation of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and associated changes in the composition and activity of the microbial population of an upland grassland soil. Biol Fertil Soil 24:52–58

    Article  CAS  Google Scholar 

  • Maynard DS, Crowther TW, Bradford MA (2017) Competitive network and diversity–function. Proc Natl Acad Sci USA 114:11464–11469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayor JR, Sanders NJ, Classen AT et al (2017) Elevation alters ecosystem properties across temperate treelines globally. Nature 542:91–95

    Article  CAS  PubMed  Google Scholar 

  • Meier CL, Suding KN, Bowman WD (2008) Carbon flux from plants to soil: roots are a below-ground source of phenolic secondary compounds in an alpine ecosystem. J Ecol 96:421–430

    Article  CAS  Google Scholar 

  • Meisner A, De Deyn GB, de Boer W et al (2013) Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc Natl Acad Sci USA 110:9835–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen TN, Beier C, Jonasson S et al (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project. Funct Ecol 22:185–195

    Google Scholar 

  • Mikola J, Yeates GW, Barker GM et al (2001) Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92:333–343

    Article  Google Scholar 

  • Mikola J, Bardgett RD, Hedlund K (2002) Biodiversity, ecosystem functioning and soil decomposer food webs. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 169–180

    Google Scholar 

  • Moore JC, Hunt WH (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263

    Article  Google Scholar 

  • Moreau D, Pivato B, Bru D et al (2015) Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology 96:2300–2310

    Article  PubMed  Google Scholar 

  • Müller PE (1884) Forest soil studies: on mull and mor in oak-forests and on heaths with some physical and chemical investigations of forest and heath soils by CFA Tuxen. Tidsskr Skovbrug Copenhagen 7(1)

    Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP et al (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737

    Article  Google Scholar 

  • Newsham KK, Watkinson AR, Fitter AH (1995) Symbiotic fungi determine plant community structure—changes in a lichen-rich community induced by fungicide application. Funct Ecol 9:442–447

    Article  Google Scholar 

  • Nielsen U, Ayres E, Wall D et al (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur J Soil Sci 62:105–116

    Article  CAS  Google Scholar 

  • Olff H, Huisman J, van Tooren BF (1993) Species dynamics and nutrient accumulation during early succession in coastal sand dunes. J Ecol 81:693–706

    Article  Google Scholar 

  • Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281

    Article  CAS  PubMed  Google Scholar 

  • Pastor J, Dewey B, Naima RJ et al (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74:467–480

    Article  Google Scholar 

  • Peltzer DA, Wardle DA, Allison VJ et al (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529

    Article  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Pollierer MM, Langel R, Körner C et al (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736

    Article  PubMed  Google Scholar 

  • Porazinska DL, Bardgett RD, Blaauw MB et al (2003) Relationships at the aboveground–belowground interface: plants, soil biota, and soil processes. Ecol Monogr 73:377–395

    Article  Google Scholar 

  • Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733

    Article  CAS  Google Scholar 

  • Prober SM, Leff JW, Bates ST et al (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95

    Article  PubMed  Google Scholar 

  • Ramirez KS, Lauber CL, Knight R et al (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470

    Article  PubMed  Google Scholar 

  • Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    Article  CAS  PubMed  Google Scholar 

  • Reinhart KO, Royo AA, van der Putten WH et al (2005) Soil feedback and pathogen activity in Prunus serotina throughout its native range. J Ecol 93:890–898

    Article  Google Scholar 

  • Rhoades DF (1985) Offensive-defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am Nat 125:205–238

    Article  Google Scholar 

  • Rinnan R, Stark S, Tolanen A (2009) Response of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J Ecol 97:788–800

    Article  CAS  Google Scholar 

  • Ritchie ME, Tilman D, Knops JMH (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–177

    Article  Google Scholar 

  • Rubin RL, van Groenigen KJ, Hungate BA (2017) Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 416:309–323

    Article  CAS  Google Scholar 

  • Sarneel JMJ, Veen GFC (2017) Legacy effects of altered flooding regimes on decomposition in a boreal floodplain. Plant Soil 421:57–66

    Article  CAS  Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Beßler H et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    Article  CAS  PubMed  Google Scholar 

  • Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food webs. In: Tscharntke T, Hawkins B (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 223–264

    Chapter  Google Scholar 

  • Schrama M, Bardgett RD (2016) Grassland invasibility varies with drought effects on soil functioning. J Ecol 104:1250–1258

    Article  Google Scholar 

  • Schweitzer JA, Juric I, Voorde TF et al (2014) Are there evolutionary consequences of plant–soil feedbacks along soil gradients? Funct Ecol 28:55–64

    Article  Google Scholar 

  • Semchenko M, Saar S, Lepik A (2017) Intraspecific genetic diversity modulates plant–soil feedback and nutrient cycling. New Phytol 216:90–98

    Article  CAS  PubMed  Google Scholar 

  • Setälä H, Huhta V (1991) Soil fauna increase Betula pendula growth: laboratory experiments with coniferous forest floor. Ecology 72:665–671

    Article  Google Scholar 

  • Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107

    Article  PubMed  Google Scholar 

  • Sharma S, Szele Z, Schilling R et al (2006) Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol 72:2148–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Strickland MS, Keiser AD, Bradford MA (2015) Climate history shapes contemporary leaf litter decomposition. Biogeochemistry 122:165–174

    Article  Google Scholar 

  • Suding KN, Ashton IW, Bechtold H et al (2008) Plant and microbe contribution to community resilience in a directionally changing environment. Ecol Monogr 78:313–329

    Article  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261–280

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • terHorst CP, Zee PC (2016) Eco-evolutionary dynamics in plant–soil feedbacks. Funct Ecol 30:1062–1072

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  CAS  Google Scholar 

  • Teste FP, Kardol P, Turner BJ et al (2017) Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355:173–176

    Article  CAS  PubMed  Google Scholar 

  • Thakur MP, Tilman D, Purschke O et al (2017) Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Sci Adv 3:e1700866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thion CE, Poirel JD, Cornulier T et al (2016) Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol Ecol 92:fiw091

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Turkington R, Holl FB, Chanway CP et al (1988) The influence of microorganisms, particularly Rhizobium, on plant competition in grass-legume communities. In: Davey AJ, Hutchinson MJ, Watkinson AR (eds) Plant population ecology. Blackwell Scientific, Boston, pp 343–366

    Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J et al (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • van der Heijden MG, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:72–75.

    Google Scholar 

  • van der Putten WH, Van Dijk C, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56

    Article  Google Scholar 

  • van der Wal R, Pearce I, Brooker R et al (2003) Interplay between nitrogen deposition and grazing causes habitat degradation. Ecol Lett 6:141–146

    Article  Google Scholar 

  • van Nuland ME, Bailey JK, Schweitzer JA (2017) Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat Ecol Evol 1:0150. https://doi.org/10.1038/s41559-017-0150

    Article  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaiíi: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736

    Article  CAS  Google Scholar 

  • Wagg C, Bender SF, Widmer F et al (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall DH, Bradford MA, St John MG et al (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–2677

    Google Scholar 

  • Ward SE, Orwin K, Ostle NJ et al (2015) Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology 96:113–123

    Article  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Zackrisson O, Hörnberg G et al (1997) The influence of island area on ecosystem properties. Science 277:1296–1299

    Article  CAS  Google Scholar 

  • Wardle DA, Barker GM, Bonner KI et al (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM et al (1999) Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monogr 69:535–568

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN et al (2004a) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004b) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  CAS  PubMed  Google Scholar 

  • Wolters V, Silver WL, Bignell DE et al (2000) Effects of global changes on above-and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. BioScience 50:1089–1098

    Article  Google Scholar 

  • Wubs ERJ, van der Putten WH, Bosch M et al (2016) Soil inoculation steers restoration of terrestrial ecosystems. Nat Plants 2:16107

    Article  PubMed  Google Scholar 

  • Wurzburger N, Hendrick RL (2009) Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest. J Ecol 97:528–536

    Article  CAS  Google Scholar 

  • Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567

    Article  CAS  PubMed  Google Scholar 

  • Yeates GW (1979) Soil nematodes in terrestrial ecosystems. J Nematol 11:213–229

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Bardgett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardgett, R.D. (2018). Linking Aboveground–Belowground Ecology: A Short Historical Perspective. In: Ohgushi, T., Wurst, S., Johnson, S. (eds) Aboveground–Belowground Community Ecology. Ecological Studies, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-91614-9_1

Download citation

Publish with us

Policies and ethics