Skip to main content

Everolimus

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 211))

Abstract

Everolimus (RAD001) is an oral protein kinase inhibitor of the mTOR (mammalian target of rapamycin) serine/threonine kinase signal transduction pathway. The mTOR pathway regulates cell growth, proliferation and survival, and is frequently deregulated in cancer.

The EMA has approved Everolimus as Afinitor®

  • for the treatment of hormone receptor-positive, HER2/neu-negative advanced breast cancer, in combination with exemestane, in postmenopausal women without symptomatic visceral disease after recurrence or progression following a nonsteroidal aromatase inhibitor,

  • for the treatment of unresectable or metastatic, well- or moderately differentiated neuroendocrine tumors of pancreatic origin in adults with progressive disease, and

  • for the treatment of unresectable or metastatic, well-differentiated (Grade 1 or Grade 2) nonfunctional neuroendocrine tumors of gastrointestinal or lung origin in adults with progressive disease, and

  • for the treatment of patients with advanced renal cell carcinoma, whose disease has progressed on or after treatment with VEGF-targeted therapy

And as Votubia®

  • for the treatment of adult patients with renal angiomyolipoma associated with tuberous sclerosis complex (TSC), who are at risk of complications (based on factors such as tumor size or presence of aneurysm, or presence of multiple or bilateral tumors) but who do not require immediate surgery, and

  • for the treatment of patients with subependymal giant cell astrocytoma (SEGA) associated with TSC who require therapeutic intervention but are not amenable to surgery, and

  • as an add-on treatment in patients from 2 years of age with seizures related to TSC that have not responded to other treatments (https://www.novartis.com/news/media-releases/novartis-drug-votubiar-receives-eu-approval-treat-refractory-partial-onset).

The FDA has approved Everolimus as Afinitor®

  • for the treatment of postmenopausal women with advanced hormone receptor-positive, HER2-negative breast cancer in combination with exemestane, after the failure of treatment with letrozole or anastrozole,

  • for the treatment of adult patients with progressive neuroendocrine tumors of pancreatic origin (PNET) with unresectable, locally advanced or metastatic disease,

  • for the treatment of adult patients with advanced RCC after failure of treatment with sunitinib or sorafenib,

  • for the treatment of adult patients with renal angiomyolipoma and tuberous sclerosis complex (TSC), not requiring immediate surgery.

  • for the treatment of adult and pediatric patients, 3 years of age or older, with SEGA associated with TSC who require therapeutic intervention but are not candidates for curative surgical resection.

Everolimus shows promising clinical activity in additional indications. Multiple Phase II and Phase III trials of everolimus alone or in combination and will help to further elucidate the role of mTOR in oncology. For a review on everolimus as immunosuppressant, please consult other sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andre F et al (2010) Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol: Official J Am Soc Clin Oncol 28(34):5110–5115

    Article  CAS  Google Scholar 

  • Andre F et al (2014) Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15(6):580–591

    Article  CAS  PubMed  Google Scholar 

  • Awada A et al (2008) The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 44(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Barnes JA et al (2013) Everolimus in combination with rituximab induces complete responses in heavily pretreated diffuse large B-cell lymphoma. Haematologica 98(4):615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baselga J et al (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol: Official J Am Soc Clin Oncol 27(16):2630–2637

    Article  CAS  Google Scholar 

  • Baselga J et al (2012a) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529

    Article  CAS  PubMed  Google Scholar 

  • Baselga J et al (2012b) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. New England J Med 366(2):109–119

    Article  CAS  Google Scholar 

  • Bissler JJ et al (2013) Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381(9869):817–824

    Article  CAS  PubMed  Google Scholar 

  • Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348

    Article  CAS  PubMed  Google Scholar 

  • Boulay A et al (2005) Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res: Official J Am Assoc Cancer Res 11(14):5319–5328

    Article  CAS  Google Scholar 

  • Carracedo A et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3 K-dependent feedback loop in human cancer. J Clin Investig 118(9):3065–3074

    PubMed  CAS  Google Scholar 

  • Chan S (2004) Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br J Cancer 91(8):1420–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crazzolara R et al (2009) Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 113(14):3297–3306

    Article  PubMed  Google Scholar 

  • Doi T et al (2010) Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol: Official J Am Soc Clin Oncol 28(11):1904–1910

    Article  CAS  Google Scholar 

  • Ehninger D et al (2008) Reversal of learning deficits in a Tsc2± mouse model of tuberous sclerosis. Nat Med 14(8):843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eng CP et al (1991) Inhibition of skin graft rejection in mice by rapamycin: a novel immunosuppressive macrolide. Transplant Proc 23(1 Pt 1):868–869

    PubMed  CAS  Google Scholar 

  • Franz DN (2011) Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther 11(8):1181–1192

    Article  CAS  PubMed  Google Scholar 

  • Franz DN (2013) Everolimus in the treatment of subependymal giant cell astrocytomas, angiomyolipomas, and pulmonary and skin lesions associated with tuberous sclerosis complex. Biologics 7:211–221

    PubMed  PubMed Central  CAS  Google Scholar 

  • Franz DN et al (2016) Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLoS ONE 11(6):e0158476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French JA et al (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388(10056):2153–2163

    Article  CAS  PubMed  Google Scholar 

  • Geoerger B et al (2001) Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 61(4):1527–1532

    PubMed  CAS  Google Scholar 

  • Hainsworth JD et al (2010) Phase II trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol: Official J Am Soc Clin Oncol 28(13):2131–2136

    Article  CAS  Google Scholar 

  • Haritunians T et al (2007) Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia 21(2):333–339

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi GN et al (2016) Correlative analysis of genetic alterations and everolimus benefit in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from BOLERO-2. J Clin Oncol 34(5):419–426

    Article  CAS  PubMed  Google Scholar 

  • Houghton PJ (2010) Everolimus. Clin Cancer Res 16(5):1368–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurvitz SA et al (2013) A phase 2 study of everolimus combined with trastuzumab and paclitaxel in patients with HER2-overexpressing advanced breast cancer that progressed during prior trastuzumab and taxane therapy. Breast Cancer Res Treat 141(3):437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh H et al (2009) RAD001 (everolimus) inhibits tumour growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med 13(7):1371–1380

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Jerusalem G et al (2011) Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat 125(2):447–455

    Article  CAS  PubMed  Google Scholar 

  • Johnston PB et al (2010) A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol 85(5):320–324

    PubMed  PubMed Central  CAS  Google Scholar 

  • Knox JJ et al (2017) Final overall survival analysis for the phase II RECORD-3 study of first-line everolimus followed by sunitinib versus first-line sunitinib followed by everolimus in metastatic RCC. Ann Oncol 28(6):1339–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger DA et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. New England J Med 363(19):1801–1811

    Article  CAS  Google Scholar 

  • Lane HA et al (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res: Official J Am Assoc Cancer Res 15(5):1612–1622

    Article  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ et al (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20(3):267–275

    Article  CAS  PubMed  Google Scholar 

  • Lu CH et al (2007) Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res: Official J Am Assoc Cancer Res 13(19):5883–5888

    Article  CAS  Google Scholar 

  • Majumder PK et al (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10(6):594–601

    Article  CAS  PubMed  Google Scholar 

  • Mak BC, Yeung RS (2004) The tuberous sclerosis complex genes in tumor development. Cancer Invest 22(4):588–603

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2003) United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem Soc Trans 31(Pt 3):573–578

    PubMed  CAS  Google Scholar 

  • Meikle L et al (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci: Official J Soc Neurosci 28(21):5422–5432

    Article  CAS  Google Scholar 

  • Mita M et al (2008) Deforolimus (AP23573) a novel mTOR inhibitor in clinical development. Expert Opin Investig Drugs 17(12):1947–1954

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ et al (2010) Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer 116(18):4256–4265

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ et al (2016) Phase II trial of second-line everolimus in patients with metastatic renal cell carcinoma (RECORD-4). Ann Oncol 27(3):441–448

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127

    Article  CAS  PubMed  Google Scholar 

  • Nakai Y et al (2017) Potential biomarkers for the therapeutic efficacy of sorafenib, sunitinib and everolimus. Oncol Rep 37(1):227–234

    Article  PubMed  Google Scholar 

  • Nishioka C et al (2008) Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 22(12):2159–2168

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell A et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol: Official J Am Soc Clin Oncol 26(10):1588–1595

    Article  CAS  Google Scholar 

  • O’Reilly T, McSheehy PM (2010) Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol 3(2):65–79

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Reilly T et al (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 65(4):625–639

    Article  CAS  PubMed  Google Scholar 

  • Ohtsu A et al (2013) Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol 31(31):3935–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlova KA, Crino PB (2010) The tuberous sclerosis complex. Ann N Y Acad Sci 1184:87–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavel ME et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378(9808):2005–2012

    Article  CAS  PubMed  Google Scholar 

  • Pavel ME et al (2017a) Efficacy of everolimus plus octreotide LAR in patients with advanced neuroendocrine tumor and carcinoid syndrome: final overall survival from the randomized, placebo-controlled phase 3 RADIANT-2 study. Ann Oncol 28(7):1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Pavel ME et al (2017b) Effect of everolimus on the pharmacokinetics of octreotide long-acting repeatable in patients with advanced neuroendocrine tumors: An analysis of the randomized phase III RADIANT-2 trial. Clin Pharmacol Ther 101(4):462–468

    Article  CAS  PubMed  Google Scholar 

  • Podsypanina K et al (2001) An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten± mice. Proc Natl Acad Sci USA 98(18):10320–10325

    Article  CAS  PubMed  Google Scholar 

  • Ravaud A et al (2015) RECORD-2: phase II randomized study of everolimus and bevacizumab versus interferon alpha-2a and bevacizumab as first-line therapy in patients with metastatic renal cell carcinoma. Ann Oncol 26(7):1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Renner C et al (2012) A multicenter phase II trial (SAKK 36/06) of single-agent everolimus (RAD001) in patients with relapsed or refractory mantle cell lymphoma. Haematologica 97(7):1085–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders P et al (2011) The mammalian target of rapamycin inhibitor RAD001 (everolimus) synergizes with chemotherapeutic agents, ionizing radiation and proteasome inhibitors in pre-B acute lymphocytic leukemia. Haematologica 96(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Schuler W et al (1997) SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 64(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Sehgal SN (1995) Rapamune (Sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit 17(6):660–665

    Article  CAS  PubMed  Google Scholar 

  • Singh J et al (2014) Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer. Breast Cancer Res 16(2):R32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain SM et al (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14(6):461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi F et al (2011) Efficacy of RAD001 (everolimus) against advanced gastric cancer with peritoneal dissemination. Invest New Drugs 29(6):1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Verma S et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. New England J Med 367(19):1783–1791

    Article  CAS  Google Scholar 

  • Villanueva A et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology, 2008. 135(6):1972–83, 1983 e1–11

    Google Scholar 

  • Wang M et al (2014) Everolimus for patients with mantle cell lymphoma refractory to or intolerant of bortezomib: multicentre, single-arm, phase 2 study. Br J Haematol 165(4):510–518

    Article  CAS  PubMed  Google Scholar 

  • Wanner K et al (2006) Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitises DLBCL cells to rituximab. Br J Haematol 134(5):475–484

    Article  CAS  PubMed  Google Scholar 

  • Witzig TE et al (2016) PILLAR-2: A randomized, double-blind, placebo-controlled, phase III study of adjuvant everolimus (EVE) in patients (pts) with poor-risk diffuse large B-cell lymphoma (DLBCL). J Clin Oncol 34(15_suppl):7506–7506

    Google Scholar 

  • Witzig TE et al (2011) A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25(2):341–347

    Article  CAS  PubMed  Google Scholar 

  • Wong M (2012) mTOR as a potential treatment target for epilepsy. Future Neurol 7(5):537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZZ et al (2013) Combination of Rituximab and the mTOR inhibitor Everolimus (RAD001) in Diffuse large B cell lymphoma. Leuk Lymphoma

    Google Scholar 

  • Yao JC et al (2016) Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: overall survival and circulating biomarkers from the randomized, phase III RADIANT-3 study. J Clin Oncol

    Google Scholar 

  • Yao JC et al (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol: Official J Am Soc Clin Oncol 26(26):4311–4318

    Article  Google Scholar 

  • Yao JC et al (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol: Official J Am Soc Clin Oncol 28(1):69–76

    Article  CAS  Google Scholar 

  • Yao JC et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. New England J Med 364(6):514–523

    Article  CAS  Google Scholar 

  • Yao JC et al (2016) Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387(10022):968–977

    Article  CAS  PubMed  Google Scholar 

  • Yoon DH et al (2012) Phase II study of everolimus with biomarker exploration in patients with advanced gastric cancer refractory to chemotherapy including fluoropyrimidine and platinum. Br J Cancer 106(6):1039–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu AX et al (2011) Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer 117(122):5094–5102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu AX et al (2014) Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA 312(1):57–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hasskarl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasskarl, J. (2018). Everolimus. In: Martens, U. (eds) Small Molecules in Oncology. Recent Results in Cancer Research, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-91442-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91442-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91441-1

  • Online ISBN: 978-3-319-91442-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics