Skip to main content

Temperature Studies of Luminescence in Nanosize SnO2 Films

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

  • 562 Accesses

Abstract

The photoluminescence low-temperature studies results for nanoscale tin dioxide films obtained by a sol-gel method using polymers are presented. The SnO2 films exhibited photoluminescence at room temperature in the orange-red spectral region (1.85–1.9 eV and 2.32 eV). In the interval 9–300 K, the temperature dependences of the peaks’ energy intensity and half-width are considered. The form of these dependences is explained by the temperature quenching of luminescence on donor-acceptor pairs and the participation of phonons in the light emission process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agekyan VT (1979) Slojnyj spektr exitinno-primesnych komplexov v defektnych kristallach dvuokisi olova. Complex spectrum of exciton-impurity complexes in defective crystals of tin dioxide. Letters in the JETP 29(8):475–479

    Google Scholar 

  2. Ryabtsev SV (2011) Thesises of the doctor of sciences dissertation. Voronezh State University, Voronezh

    Google Scholar 

  3. Agyekyan VF, Yu Serov A, Filosofov NG (2014) Izluchenije sveta kristallami dvuokisi olova (Radiation of light by tin dioxide crystals). FTP (Semiconductors) 48(4):458–461

    Google Scholar 

  4. Meier C, Luttjohann S, Kravets VG, Nienhaus H, Lorke A, Ifeacho P, Wiggers H, Schulz C, Kennedy MK, Kruis FE (2006) Vibrational and defect states in SnOx nanoparticles. J Appl Phys 99:113108

    Article  ADS  Google Scholar 

  5. Gu F, Wang SF, Song CF, Lü MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Synthesis and luminescence properties of SnO2 nanoparticles. Chem Phys Lett 372(3–4):451–454

    Article  ADS  Google Scholar 

  6. Jeong J, Choi SP, Hong KJ, Song HJ, Park JS (2006) Structural and optical properties of SnO2 thin films deposited by using CVD techniques. J Korean Phys Soc 48(5):960–963

    Google Scholar 

  7. Bonu V, Das A, Amirthapandian S, Dhara S, Tyagi AK (2015) Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles. Phys Chem Chem Phys 17(15):9794–9801. https://doi.org/10.1039/c5cp00060b

    Article  Google Scholar 

  8. Lin T, Wan N, Xu J, Xu L, Chen KJ (2010) Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique. J Nanosci Nanotechnol 10(7):4357–4362

    Article  Google Scholar 

  9. Emmanuel NM, Kuzmina MG (eds) (1985) Experimentalnye metody chimicheskoj kinetiki (Experimental methods of chemical kinetics). Publishing House of Moscow University, Moscow

    Google Scholar 

  10. Serdyuk VV, Vaksman YF (1988) Luminescencija poluprovodnicov (Luminescence of semiconductors). Vishcha shkola, Kiev-Odessa

    Google Scholar 

  11. Seidel AN, Prokofiev VK, Raiskij SM, Slavny VA, Ya E (1977) Shreider. Tablitscy spektralnych linij (Tables of spectral lines). Publishing House Science, Moscow, p 679

    Google Scholar 

  12. Viter RV, Smyntyna VA, Evtushenko NG, Filevskaya LN, Kurkov VV (2002) Issledovanije adsorbtscionno-kineticheskich characteristic tonkich plenok SnO2 (Investigation of the adsorption-kinetic characteristics of thin SnO2 films). Photoelectronics 11:с.109–113. Golovanov V, Rantala T, Lantto V (2001) Rehybrydization at (110) faces of SnO2. Photoelectronics 10:80–83

    Google Scholar 

  13. Khoviv AM, Logacheva VA, Novikov OV (2004) Features of oxidation of tin films under conditions of reduced and atmospheric pressure of oxygen under the influence of IR radiation. VESTNIK VSU Series: Chemistry Biology Pharmacy 1:101–106. (in Russian)

    Google Scholar 

  14. Kilic C, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88(9–4):095501–095505

    Article  ADS  Google Scholar 

  15. Canestraro CD, Roman LS, Persson C (2009) Polarization dependence of the optical response in SnO2 and the effects from heavily F doping. Thin Solid Films 517:6301–6304

    Article  ADS  Google Scholar 

  16. Anastasescu M, Gartner M, Mihaiu S, Anastasescu C, Purica M, Manea E, Zaharescu M (2006) Optical and structural properties of SnO2-based sol-gel thin films. In: Proceedings of the International Semiconductor Conference (Sinaia, 2006) IEEE, vol 1, pp 163–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Grinevych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grinevych, V., Filevska, L., Smyntyna, V., Ulug, B. (2018). Temperature Studies of Luminescence in Nanosize SnO2 Films. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_18

Download citation

Publish with us

Policies and ethics