Skip to main content

Contribution to the Development of a Fast Running Method for Blast Waves Propagation

  • Conference paper
  • First Online:
31st International Symposium on Shock Waves 1 (ISSW 2017)

Included in the following conference series:

  • 1501 Accesses

Abstract

Direct numerical simulation of airborne blast waves, from source location to long distance, is a challenging task due to the wide range of spatial and temporal scales. Billions of cells are necessary for 3D codes. Taking into account topography, obstacles, and variable atmospheric conditions is further restricting. In this paper we present a simplified model for blast wave propagation designed to obtain reasonably accurate results at low computational cost in the near field. This new model is an extension to blast waves of earlier simplified models for shock propagation. It gives the first arrival time and the overpressure at the front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.B. Whitham, A new approach to problems of shock dynamics. Part 1: two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)

    Article  MathSciNet  Google Scholar 

  2. G.B. Whitham, A new approach to problems of shock dynamics. Part II: three-dimensional problems. J. Fluid Mech. 5, 369–386 (1959)

    Article  MathSciNet  Google Scholar 

  3. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New-York, 1974), pp. 263–311

    MATH  Google Scholar 

  4. V.D. Sharma, C. Radha, Three dimensional shock wave propagation in an ideal gas. Int. J. Non-Linear Mech 30, 305–322 (1994)

    Article  Google Scholar 

  5. M. Pandey, V.D. Sharma, Kinematics of a shock wave of arbitrary strength in a non-ideal gas. Q. Appl. Math. 67(3), 401–418 (2009)

    Article  MathSciNet  Google Scholar 

  6. J. Ridoux et al., Comparison of Geometrical Shock Dynamics and Kinematic Models for Shock Wave Propagation, submitted to Shock Waves (2017)

    Google Scholar 

  7. B.W. Skews, The shape of a diffracting shock wave. J. Fluid Mech. 29, 297–304 (1967)

    Article  Google Scholar 

  8. G. Kinney, K. Graham, Explosive Shocks in Air, 2nd edn. (Springer, New York, 1985)

    Book  Google Scholar 

  9. S. Eveillard et al., Towards a fast-running method for blast-wave mitigation by a prismatic blast wall. C. R. Mecanique 341, 625–635 (2013)

    Article  Google Scholar 

  10. W.D. Henshaw et al., Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986)

    Article  Google Scholar 

  11. H.T. Huynh, Accurate monotone cubic interpolation. SIAM J. Numer. Anal. 30(1), 57–100 (1993)

    Article  MathSciNet  Google Scholar 

  12. S. Eveillard, Propagation d’une onde de choc en présence d’une barrière de protection, PhD dissertation. Université d’Orléans, in french, 2013

    Google Scholar 

  13. H. Jourdren, HERA: A hydrodynamic AMR platform for multi-physics simulations, in Adaptive Mesh Refinement – Theory and Applications, Lect. Notes Comput. Sci. Eng., 41, part III, pp. 283–294 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lardjane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ridoux, J., Lardjane, N., Coulouvrat, F., Monasse, L. (2019). Contribution to the Development of a Fast Running Method for Blast Waves Propagation. In: Sasoh, A., Aoki, T., Katayama, M. (eds) 31st International Symposium on Shock Waves 1. ISSW 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-91020-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91020-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91019-2

  • Online ISBN: 978-3-319-91020-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics