Skip to main content

Performance Evaluation of Multi-channel CSMA for Machine-to-Machine Communication

  • Conference paper
  • First Online:
Wireless Internet (WiCON 2017)

Abstract

Machine-to-machine (M2M) communication aims to exchange information among a large number of devices without human interference. When more and more devices are connected, nevertheless, serious delay and energy efficiency problems may emerge due to massive access. In this paper, we apply a multi-channel Carrier Sense Multiple Access (CSMA) protocol for M2M communications where the frequency band is divided into several sub-bands. It is found that whether the band partitioning offers performance gains in terms of the delay and energy efficiency performance is critically determined by the traffic load. When the traffic load exceeds certain thresholds, a larger number of sub-channels is preferable. Moreover, it is found that the packet size and the signal-to-noise ratio (SNR) have a crucial effect on the thresholds. Based on this, the number of sub-channels can be optimally chosen accordingly to make sure that the system operates in the optimum working zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajandekar, A., Sikdar, B.: A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet Things J. 2, 175–186 (2015)

    Article  Google Scholar 

  2. Park, I.S., Shitiri, E., Cho, H.S.: An orthogonal coded hybrid MAC protocol with received power based prioritization for M2M networks. In: IEEE International Conference on Ubiquitous Future Network, pp. 733–735. IEEE Press (2016)

    Google Scholar 

  3. Jang, H.S., Kim, S.M., Ko, K.S., Cha, J., Sung, D.K.: Spatial group based random access for M2M communications. IEEE Commun. Lett. 18, 961–964 (2014)

    Article  Google Scholar 

  4. Ericsson: Cellular networks for massive IoT, Janurary 2016. https://www.ericsson.com

  5. Ergen, S.C., Varaiya, P.: TDMA scheduling algorithms for wireless sensor networks. Wirel. Netw. 16, 985–997 (2010)

    Article  Google Scholar 

  6. Ko, K.S., Min, J.K., Bae, K.Y., Dan, K.S.: A novel random access for fixed-location machine-to-machine communications in OFDMA based systems. IEEE Commun. Lett. 16, 1428–1431 (2012)

    Article  Google Scholar 

  7. Karaoglu, B., Heinzelman, W.: Cooperative load balancing and dynamic channel allocation for cluster-based mobile ad hoc networks. IEEE Trans. Mobile Comput. 14, 951–963 (2015)

    Article  Google Scholar 

  8. Kwon, H., Seo, H., Kim, S., Lee, B.G.: Generalized CSMA/CA for OFDMA systems: protocol design, throughput analysis, and implementation issues. IEEE Trans. Wirel. Commun. 8, 4176–4187 (2009)

    Article  Google Scholar 

  9. Wang, G., Zhong, X.F., Mei, S.L., Wang, J.: An adaptive medium access control mechanism for cellular based machine to machine (M2M) communication. In: 2010 IEEE International Conference on Wireless Information Technology and Systems, pp. 1–4. IEEE Press (2010)

    Google Scholar 

  10. Rom, R., Sidi, M.: Multiple Access Protocols: Performance and Analysis. Springer Science & Business Media, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-3402-9

    Book  MATH  Google Scholar 

  11. Miao, G.W., Azari, A., Hwang, T.: \( E^{2} \)-MAC: energy efficient medium access for massive M2M communications. IEEE Trans. Commun. 64, 4720–4735 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants 61427801, 61401224, and 61671251, the Natural Science Foundation Program through Jiangsu Province of China under Grant BK20140882 and BK20150852, and the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant 2017D05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang .

Editor information

Editors and Affiliations

Appendix: Proof of Lemmas 1 and 2

Appendix: Proof of Lemmas 1 and 2

Let \(f_{n_{1},n_{2}}^{D}(g)=D(\frac{g}{n_{1}})-D(\frac{g}{n_{2}}), {n_{1}<n_{2}}\), we have

$$\begin{aligned} f_{n_{1},n_{2}}^{D}(g)&= [\frac{g}{{{n_1}}}(\frac{{D{n_1}}}{{W\log (1 + {n_1}\rho )}} + \delta + {\delta _d}){e^{\frac{g}{{{n_1}}}{\delta _d}}} - \frac{g}{{{n_2}}}(\frac{{D{n_2}}}{{W\log (1 + {n_2}\rho )}} + \delta + {\delta _d}){e^{\frac{g}{{{n_2}}}{\delta _d}}}]{\theta _b}\nonumber \\&\quad +\,({e^{\frac{g}{{{n_1}}}{\delta _d}}}\frac{{D{n_1}}}{{W\log (1 + {n_1}\rho )}} - {e^{\frac{g}{{{n_2}}}{\delta _d}}}\frac{{D{n_2}}}{{W\log (1 + {n_2}\rho )}}). \end{aligned}$$
(10)

It can be seen when \({g=0}\), \(f_{n_{1},n_{2}}^{D}(g)<0\), and when g goes to infinite, \(f_{n_{1},n_{2}}^{D}(g)>0\), so there exist at least a value of g makes \({f_{n_{1},n_{2}}^{D}(g)=0}\). Moreover, we have

$$\begin{aligned} \frac{d}{dg}f_{n_{1},n_{2}}^{D}(g)&= {T_{n_1}}{\theta _b}\frac{1}{{n_1}}{e^{\frac{g}{{n_1}}{\delta _d}}}(1 + \frac{g}{{n_1}}{\delta _d}) - {T_{n_2}}{\theta _b}\frac{1}{{n_2}}{e^{\frac{g}{{n_2}}{\delta _d}}}(1 + \frac{g}{{n_2}}{\delta _d}) \nonumber \\&\quad +\,{e^{\frac{g}{{n_1}}{\delta _d}}}\frac{{D{\delta _d}}}{{W\log (1 + {n_1}\rho )}} - {e^{\frac{g}{{n_2}}{\delta _d}}}\frac{{D{\delta _d}}}{{W\log (1 + {n_2}\rho )}}, \end{aligned}$$
(11)

where \(T_{n_1}=\frac{{D{n_1}}}{{W\log (1 + {n_1}\rho )}} + \delta + {\delta _d}\) and \(T_{n_2}=\frac{{D{n_2}}}{{W\log (1 + {n_2}\rho )}} + \delta + {\delta _d}\), which can be treated as two constants in this expression. When \({\delta _d}\) and \({\delta }\) in \({\mathrm{{T}}_{{n_1}}}\) and \({\mathrm{{T}}_{{n_2}}}\) is negligible, this equation can be rewritten as

$$\begin{aligned} \frac{d}{dg}f_{n_{1},n_{2}}^{D}(g)\approx \frac{D\theta _b}{{W\log (1 + {n_1}\rho )}} - \frac{D\theta _b}{{W\log (1 + {n_2}\rho )}}. \end{aligned}$$
(12)

When \(g>0\) and \(n_1<n_2\), we have \(\frac{d}{dg}f_{n_{1},n_{2}}^{D}(g)>0\), so \(f_{n_{1},n_{2}}^{D}(g)\) monotonically increases with g. Therefore, there exists a threshold of \(g_{n_{1},n_{2}}^D\), such that if \(g>g_{n_{1},n_{2}}^D\), \({f_{n_{1}, n_{2}}^{D}(g)>0}\), i.e., \(D(\frac{g}{n_{1}})>D(\frac{g}{n_{2}})\), otherwise, \({f_{n_{1},n_{2}}^{D}(g)<0}\), i.e., \(D(\frac{g}{n_{1}})<D(\frac{g}{n_{2}})\).

Similarly, we can obtain \(f_{n_{1},n_{2}}^{E}(g)\) as

$$\begin{aligned} f_{n_{1},n_{2}}^{E}(g)&= E(\frac{g}{{{n_1}}}) - E(\frac{g}{{{n_2}}})=\frac{D}{{{E_{s}} + \frac{{g{T_{{n_1}}}{e^{2\frac{g}{{{n_1}}}{\delta _d}}}}}{{{n_1} + g{T_{{n_1}}}{e^{\frac{g}{{{n_1}}}{\delta _d}}}}}{E_{f}} + (1 + (\frac{g}{{{n_1}}}{T_{n_1}} - 1\mathrm{{)}}{e^{\frac{g}{{{n_1}}}{\delta _d}}}){E_{b}}}}\nonumber \\&\quad - \frac{D}{{{E_{s}} + \frac{{g{T_{{n_2}}}{e^{2\frac{g}{{{n_2}}}{\delta _d}}}}}{{{n_2} + g{T_{{n_2}}}{e^{\frac{g}{{{n_2}}}{\delta _d}}}}}{E_{f}} + (1 + ( \frac{g}{{{n_2}}}{T_{n_2}} - 1\mathrm{{)}}{e^{\frac{g}{{{n_2}}}{\delta _d}}}){E_{b}}}}. \end{aligned}$$
(13)

When \({g=0}\), \(f_{n_{1},n_{2}}^{E}(g)>0\), and when g goes to infinite, \(f_{n_{1},n_{2}}^{E}(g)<0\). Moreover, it can be proved that when \(g>0\) and \(n_1<n_2\), \(\frac{d}{dg}f_{n_{1},n_{2}}^{E}(g)<0\), so \(f_{n_{1},n_{2}}^{E}(g)\) monotonically decreases with g. Therefore, there exist a threshold \(g_{n_{1},n_{2}}^E\), such that if \(g>g_{n_{1},n_{2}}^E\), \({f_{n_{1}, n_{2}}^{E}(g)<0}\), i.e., \(E(\frac{g}{n_{1}})<E(\frac{g}{n_{2}})\), otherwise, \({f_{n_{1},n_{2}}^{E}(g)>0}\), i.e., \(E(\frac{g}{n_{1}})>E(\frac{g}{n_{2}})\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Sun, X., Zhang, J., Zhu, H. (2018). Performance Evaluation of Multi-channel CSMA for Machine-to-Machine Communication. In: Li, C., Mao, S. (eds) Wireless Internet. WiCON 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-90802-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90802-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90801-4

  • Online ISBN: 978-3-319-90802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics