Skip to main content

Oxidative Stability of Edible Plant Oils

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Edible plant oils play a vital role in daily diets of people worldwide. Stability against oxidation is the major factor limiting the application of most edible plant oils for cooking and processing. Most native plant oils vary greatly in their stability to oxidation depending on their composition. Oxidative stability of edible plant oils has been extensively studied to find out the ways of improving their stability against oxidation to widen their application. Synthetic antioxidants are effective to improve the oxidative stability of these oils, however, recently, following the evidences on possible toxicities of synthetic antioxidants, the use of natural plant sources as antioxidant is gaining interest. In addition, modification of composition of the oils through genetic modification is another successful means to improve the oxidative stability of these oils. This chapter focuses on the mechanism and factors of oxidation and ways of improving oxidative stability of oils.

This is a preview of subscription content, log in via an institution.

References

  1. Fasina OO, Craig-Schmidt M, Colley Z, Hallman H (2008) Predicting melting characteristics of vegetable oils from fatty acid composition. LWT Food Sci Technol 41(8):1501–1505. https://doi.org/10.1016/j.lwt.2007.09.012

    Article  CAS  Google Scholar 

  2. USDA (2018) Oil seeds: world markets and trade. United States Department of Agriculture. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. Accessed 9 Mar 2018

  3. Syed A (2016) Oxidative stability and shelf life of vegetable oils. In: Hu M, Jacobsen C (eds) Oxidative stability and shelf life of foods containing oils and fats. AOCS Press, pp 187–207. https://doi.org/10.1016/B978-1-63067-056-6.00004-5

  4. Leong XF, Ng CY, Jaarin K, Mustafa MR (2015) Effects of repeated heating of cooking oils on antioxidant content and endothelial function. Austin J Pharmacol Ther 3(2):1068

    Google Scholar 

  5. Guillen MD, Cabo N (2002) Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chem 77(4):503–510

    CAS  Google Scholar 

  6. Hamilton RJ (1994) The chemistry of rancidity in foods. In: Allen JC, Hamilton RJ (eds) Rancidity in foods, 3rd edn. Blackie Academic & Professional, London, pp 1–21

    Google Scholar 

  7. Choe E, Min DB (2006) Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf 5:169–186

    CAS  Google Scholar 

  8. Adrian LK, Ronald BP, Anwesha S, Brian DC (2015) Update on the methods for monitoring UFA oxidation in food products. Eur J Lipid Sci Technol 117(1):1–14

    Google Scholar 

  9. Bruheim I (2009) Solid-phase microextraction (SPME) in the fish oil industry. LC GC Europe 22(3):126–130

    CAS  Google Scholar 

  10. Ghnimi S, Budilarto E, Kamal-Eldin A (2017) The new paradigm for lipid oxidation and insights to microencapsulation of Omega-3 fatty acids. Compr Rev Food Sci Food Saf 16:1206–1218. https://doi.org/10.1111/1541-4337.12300

    Article  CAS  PubMed  Google Scholar 

  11. Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 3(1):21–33

    CAS  PubMed  Google Scholar 

  12. Velasco J, Andersen ML, Skibsted LH (2003) Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chem 77:623–632

    Google Scholar 

  13. W¹sowicz E, Gramza A, Hêœ M, Jeleñ HH, Korczak J, Maecka M, Mildner-Szkudlarz S, Rudziñska M, Samotyja U, Zawirska-Wojtasiak R (2004) Oxidation of lipids in foods. Pol J Food Nutr Sci 13(54):87–100

    Google Scholar 

  14. Tirosh O, Shpaizer A, Kanner J (2015) Lipid peroxidation in a stomach medium is affected by dietary oils (olive/fish) and antioxidants: the Mediterranean versus Western diet. J Agric Food Chem 63(31):7016–7023

    CAS  PubMed  Google Scholar 

  15. Ahmed M, Pickova J, Ahmad T, Liaquat M, Farid A, Jahangir M (2016) Oxidation of lipids in foods. Sarhad J Agric 32(3):230–238

    Google Scholar 

  16. Fennema OR (1996) Food chemistry, 3rd edn. Marcel Decker, Inc., New York

    Google Scholar 

  17. Porter NA (2013) A perspective on free radical autoxidation: the physical organic chemistry of polyunsaturated fatty acid and sterol peroxidation. J Organomet Chem 78(8):3511–3524

    CAS  Google Scholar 

  18. Song W, Bardowell S, O’Shea K (2007) Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins). Environ Sci Technol 41(15):5336–5341

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Galano J-M, Lee YY, Durand T, Lee JC-Y (2015) Special issue on “analytical methods for oxidized biomolecules and antioxidants” the use of isoprostanoids as biomarkers of oxidative damage, and their role in human dietary intervention studies. Free Radic Res 49(5):583–598

    CAS  PubMed  Google Scholar 

  20. Gordon MH (2001) The development of oxidative rancidity. In: Pokorny J, Yanishlieva N, Gordon M (eds) Antioxidants in food – practical applications. CRC Press, Washington, pp 7–22

    Google Scholar 

  21. Tayeb AH, Sadeghifar H, Hubbe MA, Rojas OJ (2017) Lipoxygenase-mediated peroxidation of model plant extractives. Ind Crop Prod 104:253–262

    CAS  Google Scholar 

  22. Wang T, Hammond EG (2010) Lipoxygenase and lipid oxidation in foods. In: Decker EA, Elias RJ, McClements DJ (eds) Oxidation in foods and beverages and antioxidant applications. Woodhead Publishing Limited, pp 105–121. https://doi.org/10.1533/9780857090447.1.105

  23. Böttcher S, Steinhäuser U, Drusch S (2015) Off-flavour masking of secondary lipid oxidation products by pea dextrin. Food Chem 169(1):492–498

    PubMed  Google Scholar 

  24. Julia K, Caroline C, Corinne B, Marizel AG, Ana-Paulina B, Michel R, dSSD M, Robert S, Anne NS, Françoise G (2015) Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model. J Physiol Biochem 71(3):557–587

    Google Scholar 

  25. Olpin SE (2005) Fatty acid oxidation defect as a cause of neuromypathic disease in infants and adults. Clin Lab 51(5–6):289–306

    CAS  PubMed  Google Scholar 

  26. McIntyre TM, Hazen SL (2010) Lipid oxidation and cardiovascular disease: introduction to a review series. Circ Res 107:1167–1169

    CAS  PubMed  Google Scholar 

  27. Li H, Fan Y-W, Jing L, Tang L, Hu J-N, Deng Z (2013) Evaluating and predicting the oxidative stability of vegetable oils with different fatty acid compositions. J Food Sci 78(4):H633–H641. https://doi.org/10.1111/1750-3841.12089

    Article  CAS  PubMed  Google Scholar 

  28. Parker TD, Adams DA, Zhou K, Harris M, Yu L (2003) Fatty acid composition and oxidative stability of cold-pressed edible seed oils. J Food Sci 68:1240–1243

    CAS  Google Scholar 

  29. Martín-Polvillo M, Márquez-Ruiz G, Dobarganes M (2004) Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at RT. J Am Oil Chem Soc 81(6):577–583. https://doi.org/10.1007/s11746-006-0944-1

    Article  Google Scholar 

  30. Gertz C, Klostermann S, Kochhar SP (2000) Testing and comparing oxidative stability of vegetable oils and fats at frying temperature. Eur J Lipid Sci Technol 102(8–9):543–551

    CAS  Google Scholar 

  31. Xu T, Li J, Fan Y, Zheng T, Deng Z (2015) Comparison of oxidative stability among edible oils under continuous frying conditions. Int J Food Prop 18(7):1478–1490. https://doi.org/10.1080/10942912.2014.913181

    Article  CAS  Google Scholar 

  32. Wahrburg U (2004) What are the health effects of fat? Eur J Nutr 43:i6–i11

    Google Scholar 

  33. O’Brien RD (2004) Fats and oils, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  34. Ayyildiz HF, Topkafa M, Kara H, Sherazi STH (2015) Evaluation of fatty acid composition, Tocols profile, and oxidative stability of some fully refined edible oils. Int J Food Prop 18(9):2064–2076. https://doi.org/10.1080/10942912.2014.962657

    Article  CAS  Google Scholar 

  35. Velasco J, Dobarganes C (2002) Oxidative stability of virgin olive oil. Eur J Lipid Sci Technol 104:661–676

    CAS  Google Scholar 

  36. Dobarganes MC (1998) Formation and analysis of high molecular-weight compounds in frying fats and oil. OCL 5:41–47

    CAS  Google Scholar 

  37. Azeredo HMC, Faria JAF, Silva MAAP (2003) The efficiency of TBHQ, β-carotene, citiric acid, and tinuvin 234 on the sensory stability of soybean oil packaged in PET bottles. J Food Sci 68:302–306

    Google Scholar 

  38. Pascall MA, Harte BR, Giacin JR, Gray JI (1995) Decreasing lipid oxidation in soybean oil by a UV-absorber in the packaging material. J Food Sci 60:1116–1119

    CAS  Google Scholar 

  39. Marinova EM, Seizova KA, Totseva IR, Panayotova SS, Marekov IN, Momchilova SM (2012) Oxidative changes in some vegetable oils during heating at frying temperature. Bulg Chem Commun 44(1):57–63

    CAS  Google Scholar 

  40. Marquez-Ruiz G, Dobarganes MC (2007) Nutritional and physiological effects of used frying oil and fats. In: Erickson MD (ed) Deep frying: chemistry, nutrition and practical application. AOCS Press, Urbana, pp 173–203

    Google Scholar 

  41. Choe E, Min DB (2007) Chemistry of deep-fat frying oils. J Food Sci 72(5):R77–R86

    CAS  PubMed  Google Scholar 

  42. Karakaya S, Simsek S (2011) Changes in total polar compounds, peroxide value, total phenols, and antioxidant activity of various oils used in deep fat frying. J Am Oil Chem Soc 88:1361–1366

    CAS  Google Scholar 

  43. Casal S, Malheiro R, Sendas A, Oliveira BPP, Pereira JA (2010) Olive oil stability under deep-frying conditions. Food Chem Toxicol 48:2972–2979

    CAS  PubMed  Google Scholar 

  44. Juárez MD, Osawa CC, Acuña ME, Sammán N, Gonçalves LAG (2010) Degradation in soybean oil, sunflower oil, and partially hydrogenated fats after food frying, monitored by conventional and unconventional methods. Food Control 22:1920–1927

    Google Scholar 

  45. Andersson K, Lingnert H (1998) Influence of oxygen and copper concentration on lipid oxidation in rapeseed oil. J Am Oil Chem Soc 75:1041. https://doi.org/10.1007/s11746-998-0284-4

    Article  CAS  Google Scholar 

  46. Tan CP, Che Man YB, Selamat J, Yusoff MSA (2002) Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chem 76(3):385–389. https://doi.org/10.1016/S0308-8146(01)00272-2

    Article  CAS  Google Scholar 

  47. O’Brien RD (2009) Fats and oils: formulating and processing for applications, 3rd edn. CRC Press, New York

    Google Scholar 

  48. Szydłowska-Czerniak A, Łaszewska A (2015) Effect of refining process on antioxidant capacity, total phenolics and prooxidants contents in rapeseed oils. LWT-Food Sci Technol 64(2):853–859

    Google Scholar 

  49. Wilson RF (2012) The role of genomics and biotechnology in achieving global food security for high-oleic vegetable oil. J Oleo Sci 61(7):357–367

    CAS  PubMed  Google Scholar 

  50. Alimentarius C (2015) Codex standards for named vegetable oils (CODEX-STAN 210–1999, Amendment: 2005, 2011, 2013 and 2015)

    Google Scholar 

  51. Khan MI, Asha MR, Bhat KK, Khatoon S (2011) Studies on chemical and sensory parameters of coconut oil and its olein blends with sesame oil and palmolein during wheat flour-based product frying. J Food Sci Technol 48(2):175–182. https://doi.org/10.1007/s13197-010-0145-7

    Article  CAS  PubMed  Google Scholar 

  52. Eyres L, Eyres MF, Chisholm A, Brown RC (2016) Coconut oil consumption and cardiovascular risk factors in humans. Nutr Rev 74(4):267–280. https://doi.org/10.1093/nutrit/nuw002

    Article  PubMed  PubMed Central  Google Scholar 

  53. Koushki M, Nahidi M, Cheraghali F (2015) Physico-chemical properties, fatty acid profile and nutrition in palm oil. J Paramed Sci 6(3):117–134

    Google Scholar 

  54. Mat Dian NL, Hamid RA, Kanagaratnam S, Isa WRA, Hassim NAMH, NIsmail NH, Omar Z, Sahri MM (2017) Palm oil and palm kernel oil: versatile ingredients for food applications. J Oil Palm Res 29(4):487–511. https://doi.org/10.21894/jopr.2017.00014

    Article  CAS  Google Scholar 

  55. Kochhar SP (2000) Stable and healthful oils for the 21st century. Inform 11:642–647

    Google Scholar 

  56. Rossel JB (2001) Factors affecting the quality of frying oils and fats. In: Rossel JB (ed) Frying: improving quality. Woodhead Publishing Ltd., Cambridge, pp 115–164

    Google Scholar 

  57. Aniołowska M, Zahran H, Kita A (2016) The effect of pan frying on thermooxidative stability of refined rapeseed oil and professional blend. J Food Sci Technol 53(1):712–720. https://doi.org/10.1007/s13197-015-2020-z

    Article  CAS  PubMed  Google Scholar 

  58. Medina-Juárez LA, Gámez-Meza N (2011) Effect of refining process and use of natural antioxidants on soybean oil. In: Ng T (ed) Soybean – biochemistry, chemistry and physiology. InTech, pp 435–460

    Google Scholar 

  59. Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kellens M (1997) Current developments in oil refining technology. Technical report, Belgium

    Google Scholar 

  61. Halliwell B, Gutteridge JC (1995) The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 18(1):125–126. https://doi.org/10.1016/0891-5849(95)91457-3

    Article  CAS  PubMed  Google Scholar 

  62. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x

    Article  CAS  Google Scholar 

  63. Budilarto-Poulin E, Kamal-Eldin A (2015) The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils. Eur J Lipid Sci Technol 117(8):1095–1137. https://doi.org/10.1002/ejlt.201400200

    Article  CAS  Google Scholar 

  64. Chaiyasit W, Elias RJ, McClements DJ, Decker EA (2007) Role of physical structures in bulk oils on lipid oxidation. Crit Rev Food Sci Nutr 47(3):299–317. https://doi.org/10.1080/10408390600754248

    Article  CAS  PubMed  Google Scholar 

  65. Azizkhani M, Zandi P (2009) Effects of some natural antioxidants mixtures on margarine stability. World Acad Sci Eng Technol 49:93–96

    Google Scholar 

  66. Müller WW, Jakob I, Li C, Tatzky-Gerth R (2009) Antioxidant depletion and OIT values of high impact PP strands. Chin J Polym Sci 27(3):435–445

    Google Scholar 

  67. Azeez OT, Ejeta KO, Frank EO, Gerald NE (2013) Effects of antioxidants on the oxidative stability of vegetable oil at elevated temperature. Int J Appl Sci Technol 3(5):107–115

    Google Scholar 

  68. Halliwell B, Gutteridge JMC (2001) Free radicals in biology and medicine, 3rd edn. Oxford Univ Press Inc, New York

    Google Scholar 

  69. Choe E, Min DB (2005) Chemistry and reactions of reactive oxygen species in foods. J Food Sci 70(9):142–159. https://doi.org/10.1111/j.1365-2621.2005.tb08329.x

    Article  Google Scholar 

  70. Stahl W, Sies H (1993) Physical quenching of singlet oxygen and cis-trans isomerization of carotenoids. Ann N Y Acad Sci 691:10–19. https://doi.org/10.1111/j.1749-6632.1993.tb26153.x

    Article  CAS  PubMed  Google Scholar 

  71. Marinova E, Toneva A, Yanishlieva N (2008) Synergistic antioxidant effect of α-tocopherol and myricetin on the autoxidation of triacylglycerols of sunflower oil. Food Chem 106(2):628–633. https://doi.org/10.1016/j.foodchem.2007.06.022

    Article  CAS  Google Scholar 

  72. Haj Hamdo H, Khayata W, Al-Assaf Z (2014) Synergistic effect of combined some natural and synthetic antioxidants to increase oxidative stability using DPPH test. Int J ChemTech Res 6(4):2539–2545

    Google Scholar 

  73. Ribeiro MDMM, Ming CC, Silvestre IM, Grimaldi R, Gonçalves LG (2017) Comparison between enzymatic and chemical interesterification of high oleic sunflower oil and fully hydrogenated soybean oil. Eur J Lipid Sci Technol 119(2)

    Google Scholar 

  74. Abdelazim AA, Mahmoud A, Ramadan-Hassanien MF (2013) Oxidative stability of vegetable oils as affected by sesame extracts during accelerated oxidative storage. J Food Sci Technol 50(5). https://doi.org/10.1007/s13197-011-0419-8

  75. Jeong SM, Kim SY, Kim DR, Nam KC, Ahn DU, Lee SC (2004) Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. Food Chem Toxicol 69(5):C377–C381

    CAS  Google Scholar 

  76. Yanishlieva VN, Marinova E (2001) Stabilisation of edible oils with natural antioxidants. Eur J Lipid Sci Technol 103(11):752–767. https://doi.org/10.1002/1438-9312(200111)103:11<752::AID-EJLT752>3.0.CO;2-0

    Article  CAS  Google Scholar 

  77. Afaf KE, Andersson R (1997) A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J Am Oil Chem Soc 74:375–380

    Google Scholar 

  78. Warner K, Su C, White PJ (2004) Role of antioxidants and polymerization inhibitors in protecting frying oils. In: Warner K, Gupta MK, White PJ (eds) Frying technology and practices, 1st edn. AOCS Press, New York, pp 37–49

    Google Scholar 

  79. Taghvaei M, Jafari SM (2013) Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J Food Sci Technol 52(3):1272–1282. https://doi.org/10.1007/s13197-013-1080-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saito M, Sakagami H, Fujisawa S (2003) Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Anticaner Res 23:4693–4701

    CAS  Google Scholar 

  81. Sarafian TA, Kouyoumjian S, Tashkin D, Roth MD (2002) Synergistic cytotoxicity of 9-tetrahydrocannabinol and butylated hydroxyanisole. Toxicol Lett 133(2):171–179. https://doi.org/10.1016/S0378-4274(02)00134-0

    Article  CAS  PubMed  Google Scholar 

  82. Farag RS, El-Baroty GS, Basuny A (2003) Safety evaluation of olive phenolic compounds as natural antioxidants. Int J Food Sci Nutr 54(3):159–174. https://doi.org/10.1080/0963748031000136306

    Article  CAS  PubMed  Google Scholar 

  83. Sachindra NM, Airanthi MKWA, Hosokawa M, Miyashita K (2010) Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. J Food Sci Technol 47:94–99

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shui G, Leong LP (2006) Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem 97:277–284

    CAS  Google Scholar 

  85. Hemachandra TP, Jayathilake RRGDK, Madhujith WMT (2017) The effect of Antioxidative extracts on mitigating autoxidation of selected edible oils during deep frying. Trop Agric Res 28(3):247–255

    Google Scholar 

  86. Bopitiya D, Madhujith T (2015) Efficacy of pomegranate (Punica granatum L.) peel extracts in suppressing oxidation of white coconut oil used for deep frying. Trop Agric Res 25(3):298–306. https://doi.org/10.4038/tar.v25i3.8040

    Article  Google Scholar 

  87. Yin J, Becker EM, Andersen ML, Skibsted LH (2012) Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems. Food Chem 135(4):2195–2202. https://doi.org/10.1016/j.foodchem.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  88. Abd-ElGhany ME, Ammar MS, Hegazy AE (2010) Use of olive waste cake extract as a natural antioxidant for improving the stability of heated sunflower oil. World Appl Sci J 11(1):106–113

    CAS  Google Scholar 

  89. Abdel-Razek AG, El-Shami SM, El-Mallah MH, Hassanien MMM (2011) Blending of virgin olive oil with less stable edible oils to strengthen their antioxidative potencies. Aust J Basic Appl Sci 5(10):312–318

    CAS  Google Scholar 

  90. Sayyad R, Jafari S, Ghomi M (2017) Thermoxidative stability of soybean oil by natural extracted antioxidants from rosemary (Rosmarinus officinalis L.). Int J Food Prop 20(2):436–446. https://doi.org/10.1080/10942912.2016.1166127

    Article  CAS  Google Scholar 

  91. Ali S, Chatha SAS, Ali Q, Hussain AI, Hussain SM, Perveen R (2016) Oxidative stability of cooking oil blend stabilized with leaf extract of Eucalyptus citriodora. Int J Food Prop 19(7):1556–1565. https://doi.org/10.1080/10942912.2015.1047514

    Article  CAS  Google Scholar 

  92. Maleki M, Ariaii P, Fallah H (2015) Effects of celery extracts on the oxidative stability of canola oil under thermal condition. J Food Process Preserv 40(3):531–540. https://doi.org/10.1111/jfpp.12632

    Article  CAS  Google Scholar 

  93. Hraš AR, Hadolin M, Knez Ž, Bauman D (2000) Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chem 71(2):229–233. https://doi.org/10.1016/S0308-8146(00)00161-8

    Article  Google Scholar 

  94. Baştürk A, Boran G, Javidipour I (2017) Effects of ascorbyl palmitate and metal ions on oxidation of sunflower oil under accelerated oxidation conditions. J Anim Plant Sci 27(6):2014–2024

    Google Scholar 

  95. Hassanein M, Abdel-razek A (2012) Improving the stability of edible oils by blending with roasted sesame seed oil as a source of natural antioxidants. J Appl Sci Res 8(8):4074–4083

    Google Scholar 

  96. Mohammadi A, Jafari SM, Esfanjani AF, Akhavan S (2016) Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chem 190:513–519. https://doi.org/10.1016/j.foodchem.2015.05.115

    Article  CAS  PubMed  Google Scholar 

  97. Sakurai H, Yoshihashi T, Nguyen HTT, Pokorný J (2018) A new generation of frying oils. Czech J Food Sci 21(4):145–151. https://doi.org/10.17221/3491-CJFS

    Article  Google Scholar 

  98. Lee J-D, Bilyeu KD, Grover Shannon J (2007) Genetics and breeding for modified fatty acid profile in soybean seed oil. J Crop Sci Biotchnol 10(4):201–210

    Google Scholar 

  99. Murphy DJ (2014) Using modern plant breeding to improve the nutritional and technological qualities of oil crops. OCL 21(6):D607. https://doi.org/10.1051/ocl/2014038

    Article  Google Scholar 

  100. Bellaloui N, Reddy KN, Mengistu A (2015) Drought and heat stress effects on soybean fatty acid composition and oil stability. In: Processing and impact on active components in food. Elsevier Inc., pp 377–384. https://doi.org/10.1016/B978-0-12-404699-3.00045-7

  101. Kaushik I, Grewal RB (2017) Trans fatty acids: replacement technologies in food. Adv Res 9(5):1–14. https://doi.org/10.9734/AIR/2017/33297

    Article  CAS  Google Scholar 

  102. O'Keefe SF, Wiley VA, Knauft DA (1993) Comparison of oxidative stability of high and normaI-oleic peanut oils. J Am Oil Chem Soc 70(5):489–492

    CAS  Google Scholar 

  103. Okogeri O (2016) Improving the frying stability of peanut oil through blending with palm kernel oil. J Food Res 5(1):82–87. https://doi.org/10.5539/jfr.v5n1p82

    Article  CAS  Google Scholar 

  104. Matthäus B (2012) Oil technology. In: Gupta SK (ed) Technological innovations in major world oil crops, vol 2. Springer, pp 23–92. https://doi.org/10.1007/978-1-4614-0827-7_2

  105. Wroniak M, Florowska A, Rękas A (2016) Acta scientiarum polonorum. Technol Aliment 15(1):79–87. https://doi.org/10.17306/J.AFS.2016.1.8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence Madhujith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Madhujith, T., Sivakanthan, S. (2019). Oxidative Stability of Edible Plant Oils. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_94

Download citation

Publish with us

Policies and ethics