Skip to main content

Emerging Imaging Technologies: Trends and Challenges

  • Chapter
  • First Online:
3D Visual Content Creation, Coding and Delivery

Abstract

This chapter addresses image and video technologies related to 3D immersive multimedia delivery systems with special emphasis on the most promising digital formats. Besides recent research results and technical challenges associated with multiview image and image, video and lightfield acquisition and processing, the chapter also presents relevant results from international standardization activities in the scope of ISO, IEC, and ITU. Standard solutions to encode multiview image and video content and ongoing research are addressed, along with novel solutions to enable further developments in the emerging technologies dealing with capture and coding for lightfield content and free viewpoint television.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Written in 2017.

  2. 2.

    See Sect. 2.3.

References

  1. Aggoun, A., Tsekleves, E., Swash, M.R., Zarpalas, D., Dimou, A., Daras, P., et al.: Immersive 3D Holoscopic Video System. IEEE Multimed. 20, 28–37 (2013)

    Article  Google Scholar 

  2. Isgro, F., Trucco, E., Kauff, P., Schreer, O.: Three-dimensional image processing in the future of immersive media. IEEE Trans Circuits Syst. Video Techn. 14, 288–303 (2004)

    Article  Google Scholar 

  3. Domański, M., Stankiewicz, O., Wegner, K., Grajek, T.: Immersive visual media—MPEG-I: 360 video, virtual navigation and beyond. In: International Conference on Systems, Signal and Image Processing, Poznań, May 2017

    Google Scholar 

  4. Benesty, J., Chen, J., Huang, Y.: Microphone array signal processing. Springer-Verlag, Berlin (2008)

    Google Scholar 

  5. Ziegler, M., Zilly, F., Schaefer, P., Keinert, J., Schöberl, M., Foessel, S.,Dense lightfield reconstruction from multi aperture cameras. In: 2014 IEEE International Conference on Image Processing (ICIP), Paris 2014, pp. 1937–1941

    Google Scholar 

  6. Herre, J., Hilpert, J.: A. Kuntz,J. Plogsties, MPEG-H 3D Audio—The new standard for coding of immersive spatial audio. IEEE J Select Topics Signal Proces 9, 770–779 (2015)

    Article  Google Scholar 

  7. Blauert, J. (ed.): Technology of binaural listening. Springer-Verlag, Berlin/Heidelberg (2013)

    Google Scholar 

  8. ISO/IEC IS 23003-1: 2007, “MPEG audio technologies—Part 1: MPEG Surround”

    Google Scholar 

  9. “Spatial Audio Object Coding (SAOC)”, ISO/IEC IS 23003-2: 2016, 2nd Ed

    Google Scholar 

  10. “3D audio”, ISO/IEC International Standard 23008-3 (2015)

    Google Scholar 

  11. “Unified Speech and Audio Coding (USAC)”, ISO/IEC IS 23003-2: 2016 (2nd Ed.)

    Google Scholar 

  12. Ishida, T., Shibata, Y.: Proposal of tele-immersion system by the fusion of virtual space and real space. In: 2010 13th International Conference on Network-Based Information Systems (NBiS), Takayama, Gifu, Japan (2010)

    Google Scholar 

  13. EBU Technical Report TR 039, “Opportunities and challenges for public service media in vr, ar and mr”, Geneva, April 2017

    Google Scholar 

  14. https://en.wikipedia.org/wiki/360-degree_video, as Octiber 28th, 2017

  15. “Omnidirectional Media Format”, ISO/IEC DIS 23090-2, Doc. ISO/IEC JTC1/SC29/WG11 N16824 April 2017, Hobart, Australia

    Google Scholar 

  16. Requirements for Omnidirectional Media Format. ISO/IEC JTC1/SC29/WG11 Doc. N 16773, April 2017, Hobart, Australia

    Google Scholar 

  17. Call for Proposals for Point Cloud Coding V2. ISO/IEC/JTC1/SC29/WG11, Doc. N16763, April 2017, Hobart, Australia

    Google Scholar 

  18. Lafruit, G., Domański, M., Wegner, K., Grajek, T., Senoh, T., Jung, J., Kovács, P., Goorts, P., Jorissen, L., Munteanu, A., Ceulemans, B., Carballeira, P., García, S., Tanimoto, M.: “New visual coding exploration in MPEG: Super-MultiView and Free Navigation in Free viewpoint TV”, in IST Electronic Imaging, pp. 1–9. Stereoscopic Displays and Applications XXVII, San Francisco (2016)

    Google Scholar 

  19. Tanimoto, M., Panahpour, M., Fujii, T., Yendo, T.: FTV for 3-D spatial communication. Proc. IEEE 100(4), 905–917 (2012)

    Article  Google Scholar 

  20. Domański, M., Bartkowiak, M., Dziembowski, A., Grajek, T., Grzelka, A., Łuczak, A., Mieloch, D., Samelak, J., Stankiewicz, O., Stankowski, J.: Krzysztof Wegner. New results in free-viewpoint television systems for horizontal virtual navigation. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, 2016, pp. 1–6

    Google Scholar 

  21. Domański, M., Dziembowski, A., Grzelka, A., Mieloch, D.: Optimization of camera positions for free-navigation applications, Int Con Signals Elect Syst. ICSES 2016, Kraków, Poland, September 5–7 2016

    Google Scholar 

  22. Domański, M.: Approximate video bitrate estimation for television services. ISO/IEC JTC1/SC29/WG11 Doc. MPEG M3671, Warsaw, June 2015

    Google Scholar 

  23. Domański, M., Dziembowski, A., Grajek, T., Grzelka, A., Kowalski, L., Kurc, M.,  Łuczak, A., Mieloch, D., Ratajczak, R., Samelak, J., Stankiewicz, O., Stankowski, J.: Krzysztof Wegner. Methods of high efficiency compression for transmission of spatial representation of motion scenes. In: IEEE International Conference on Multimedia and Expo Workshops, Torino (2015)

    Google Scholar 

  24. Miller, G., Starck, J., Hilton, A.: Projective surface refinement for free-viewpoint video. 3rd European Conf, pp. 153–162. CVMP, Visual Media Production (2006)

    Google Scholar 

  25. Smolic, A., et al.: 3D video objects for interactive applications. European Signal Proc. Conf, EUSIPCO (2005)

    Google Scholar 

  26. Tanimoto, M.: Overview of free viewpoint television. Signal Proc. Image Communic. 21, 454–461 (2006)

    Google Scholar 

  27. Wei, K.-Ch., Huang, Y.-L., Chien, S.-Y.: Point-based model construction for free-viewpoint tv. In: IEEE International Conference on Consumer Electronics ICCE 2013, Berlin, pp. 220–221

    Google Scholar 

  28. Müller, K., Merkle, P., Wiegand, T.: 3D Video Representation Using Depth Maps. Proc. IEEE 99(4), 643–656 (2011)

    Article  Google Scholar 

  29. “3D world largest 200-inch autostereoscopic display at Grand Front Osaka”, published: 28 April 2013, https://wn.com/3d_world_largest_200-inch_autostereoscopic_displayat_grand_front_osaka

  30. Holografik.:, “HoloVizio C80 3D cinema system”, Budapest, http://www.holografika.com/Products/NEW-HoloVizio-C80.html, retrieved on April 21, 2017

  31. NICT News, Special Issue on Stereoscopic Images, no. 419, November 2011

    Google Scholar 

  32. Adelson, E.H., Bergen, J.R., Landy, M., Movshon, J.A. (eds.): The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, pp. 3–20. MIT Press, Cambridge, U.K. (1991)

    Google Scholar 

  33. Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Merkle, P., Rhee F.H., Gerhard, T., Winken, M., Wiegand, T.: 3D High-Efficiency Video Coding for Multi-View Video and Depth Data. IEEE Trans. Image Proces. 22(9), 3366–3378 (2013)

    Google Scholar 

  34. Domański, M., Grajek, T., Klimaszewski, K., Kurc, M., Stankiewicz, O., Stankowski, J., Wegner, K.: Poznan multiview video test sequences and camera parameters ISO/IEC JTC1/SC29/WG11 Doc. MPEG M17050, Xian, China, October (2009)

    Google Scholar 

  35. Stamos., Allen, P.K.: Integration of range and image sensing for photo-realistic 3D modeling. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, San Francisco, CA, 2000, pp. 1435–1440 vol. 2

    Google Scholar 

  36. Sandberg, D., Forssen P.E., Ogniewski, J.: Model-based video coding using colour and depth cameras. In: 2011 International Conference on Digital Image Computing: Techniques and Applications, Noosa, QLD, 2011, pp. 158–163

    Google Scholar 

  37. Gokturk, S., Yalcin, H., Bamji, C.: A time-of-flight depth sensor—system description, issues and solutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, Jun. 2004

    Google Scholar 

  38. Kang, Y.S., Ho, Y.S.: High-quality multi-view depth generation using multiple color and depth cameras. IEEE Int Conf Multi Expo 2010, 1405–1410 (2010)

    Google Scholar 

  39. Sen, X., Li, Y., Qiong, L., Zixiang, X., A gradient-based approach for interference cancelation in systems with multiple Kinect cameras. In: 2013 IEEE International Symposium on Circuits and Systems, pp. 13–16 (2013)

    Google Scholar 

  40. Wang, Q.: Computational models for multiview dense depth maps of dynamic scene. In: 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  41. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge Univ Press, (2015)

    MATH  Google Scholar 

  42. Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  43. Atzpadin, N., Kauff, P., Schreer, O.: Stereo analysis by hybrid recursive matching for real-time immersive video conferencing. Circ. Syst. Video Technol. IEEE Trans. 14(3), 321–334 (2004)

    Article  Google Scholar 

  44. Lee, S., Ho, Y.: View-consistent multiview depth estimation for three-dimensional video generation. In: 3DTV-Conference: The True Vision—Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1-4, June 2010

    Google Scholar 

  45. Min, D., Yea, S., Vetro, A.: Temporally consistent stereo matching using coherence function. 3DTV-Conference: The True Vision—Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1-4, June 2010

    Google Scholar 

  46. Bleyer, M., Gelautz, M.: Graph-based surface reconstruction from stereo pairs using image segmentation. Proc. SPIE Int. Soc. Optical Eng. 5665, 288–299 (2005)

    Google Scholar 

  47. Hong, L., Chen, G.: Segment-based stereo matching using graph cuts. In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 74–81 (2004)

    Google Scholar 

  48. Zilly, F., Riechert, C., Muller, M., Eisert, P., Sikora, T., Kauff, P.: Real-time generation of multi-view video plus depth content using mixed narrow and wide baseline. J. Vis. Commun. Image R. 25(4), 632–648 (2014)

    Google Scholar 

  49. Jorissen, L., Goorts, P., Rogmans, S., Lafruit, G., Bekaert, P.: Multi-camera epipolar plane image feature detection for robust view synthesis. In: 3DTV-Conference: The True Vision—Capture, Transmission and Display of 3D Video (3DTV-CON) (2015)

    Google Scholar 

  50. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo Matching Using Belief Propagation. IEEE Trans. Pattern Analy. Machine Intell. 25(7), 787–800 (2003)

    Article  Google Scholar 

  51. Montserrat, T., Civit, J., Escoda, O., Landabaso, J.: Depth estimation based on multiview matching with depth/color segmentation and memory efficient belief propagation. In: IEEE International Conference on Image Processing, pp. 2329–2332 (2009)

    Google Scholar 

  52. Stankiewicz, O., Domański, M.: Krzysztof Wegner. Estimation of Temporally-Consistent Depth Maps from Video with Reduced Noise. In: 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, 3DTV-Con 2015, Lisbon, Portugal, 8-10 July 2015

    Google Scholar 

  53. Mieloch, D., Dziembowski, A., Grzelka, A., Stankiewicz, O., Domański, M.: Graph-based multiview depth estimation using segmentation. IEEE Int. Conf. Multimedia Expo ICME 2017, Hong Kong, 10–14 July 2017

    Google Scholar 

  54. Stankiewicz, O., Wegner, K., Tanimoto, M., Domański, M.: Enhanced Depth Estimation Reference Software (DERS) for Free-viewpoint Television. ISO/IEC JTC1/SC29/WG11 Doc. MPEG M31518, Geneva, 2013

    Google Scholar 

  55. Dziembowski, A., Grzelka, A., Mieloch, D., Stankiewicz, O.: Krzysztof Wegner. In: Domański, M (ed). Multiview Synthesis—improved view synthesis for virtual navigation, 32nd Picture Coding Symposium, PCS 2016, Nuremberg, Germany, December 4–7, 2016

    Google Scholar 

  56. Domański, M., Stankiewicz, O., Wegner, K., Kurc, M., Konieczny, J., Siast, J., Stankowski, J., Ratajczak, R., Grajek, T.: High Efficiency 3D Video Coding Using New Tools Based on View Synthesis. IEEE Trans. Image Process. 22(9), 3517–3527 (2013)

    Article  Google Scholar 

  57. Tanimoto, M., Tehrani, M., Fujii, T., Yendo, T.: Free-viewpoint TV—A Review of the Ultimate 3DTV and its Related Technologies. IEEE Signal Proces. Mag. pp. 67–76, January 2011

    Google Scholar 

  58. Do, L., Zinger, S., Morvan, Y., With, P.: Quality Improving Techniques in DIBR for Free-viewpoint Video. In: Proceedings of 3DTV Conference: The True Vision—Capture, Transmission and Display of 3D Video, May 2009

    Google Scholar 

  59. Mori, Y., Fukushima, N., Fujii, N., Tanimoto, M.: View Generation with 3D Warping using Depth Information for FTV. In: Proceedings of 3DTV Conference: The True Vision—Capture, Transmission and Display of 3D Video, May 2008

    Google Scholar 

  60. Oh, K., Yea, S., Vetro, A., Ho, Y.: Virtual View Synthesis Method and Self-Evaluation Metrics for Free Viewpoint Television and 3D Video. Int. J. Imaging Syst. Technol. 20(4), 378–390 (2010)

    Article  Google Scholar 

  61. Yang, X., Lui, J., Sun, J., Li, X., Liu, W., Gao, Y.: DIBR based View Synthesis for Free-viewpoint Television. In: Proceedings of 3DTV Conference: The True Vision—Capture, Transmission and Display of 3D Video, May 2011

    Google Scholar 

  62. Wegner, K., Stankiewicz, O., Tanimoto, M., Domanski, M.: Enhanced View Synthesis Reference Software (VSRS) for Free-viewpoint Television. ISO/IEC JTC1/SC29/WG11 MPEG2013/M31520 October 2013, Geneva, Switzerland

    Google Scholar 

  63. Zarb, T., Debono, C.: Depth-based Image Processing for 3D Video Rendering Applications. In: Proceedings of the 21st International Conference on Systems, Signals and Image Processing, pp. 215–218, May 2014

    Google Scholar 

  64. Tran, A., Harada, K.: View Synthesis with Depth Information based on Graph Cuts for FTV. In: Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, pp. 289–294, February 2013

    Google Scholar 

  65. Xu, J., Yan, F., Cao, X.: Stereoacuity-guided Depth Image based Rendering. In: Proceedings of the IEEE International Conference on Multimedia and Expo, July 2014

    Google Scholar 

  66. Lei, J., Zhang, C., Fang, Y., Gu, Z., Ling, N., Hou, C.: Depth Sensation Enhancement for Multiple Virtual View Rendering. IEEE Trans. Multimedia 17(4), 457–469 (2015)

    Article  Google Scholar 

  67. “Generic coding of moving pictures and associated audio information: Video”, ISO/IEC Int. Standard 13818-2: 2013 and ITU-T Rec. H.262 (V3.1),2012

    Google Scholar 

  68. “Advanced video coding”, ISO/IEC International Standard 14496-10, 8th Ed., September 2014, and ITU-T Rec. H.264 (V12), 12th Ed., April 2017

    Google Scholar 

  69. “High Efficiency Video Coding”, ISO/IEC IS 23008-2, 3rd Ed., October 2017, and ITU-T Rec. H.265, 4th Ed., December 2016

    Google Scholar 

  70. Domański, M., Grajek, T., Karwowski, D., Klimaszewski, K., Konieczny, J., Kurc, M., Łuczak, A., Ratajczak, R., Siast, J., Stankiewicz, O., Stankowski, J., Wegner, K.: New coding technology for 3D video with depth maps as proposed for standardization within MPEG. In: 19th International Conference on Systems, Signals and Image Processing, IWSSIP 2012, Vienna, Austria, 11–13 April 2012, pp. 401–404

    Google Scholar 

  71. Domański, M., Grajek, T., Karwowski, D., Konieczny, J., Kurc, M., Łuczak, A.,  Ratajczak, R., Siast, J., Stankowski, J.: Krzysztof Wegner. Coding of multiple video + depth using HEVC technology and reduced representations of side views and depth maps. 29th Picture Coding Symposium, PCS 2012, Kraków, May 2012, pp. 5–8

    Google Scholar 

  72. Domański, M., Dziembowski, A., Mieloch, D., Łuczak, A., Stankiewicz O., Wegner, K.: A practical approach to acquisition and processing of free viewpoint video. In: 2015 Picture Coding Symposium (PCS), Cairns, QLD, 2015, pp. 10–14

    Google Scholar 

  73. Haskell, B.G., Puri, A., Netravali, A.N.: Digital video: an introduction to MPEG-2. Chapman & Hall, New York (1996)

    Google Scholar 

  74. Vetro, A., Wiegand, T., Sullivan, G.J.: Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proc. IEEE 99, 626–642 (2011)

    Article  Google Scholar 

  75. Tech, G., Chen, Y., Ohm, K.M.J.-R., Vetro, A., Wang, Y.-K.: Overview of the multiview and 3D extensions of high efficiency video coding. IEEE Trans. Circ. Syst0 Video Technol. 26(1), 35–49 (2016)

    Article  Google Scholar 

  76. Samelak, J., Stankiewicz, O., Domański, M.: Do we need multiview profiles for future video coding generations?, Doc. ISO/IEC JTC1/SC29/WG11 M41499 October 2017, Macau, China

    Google Scholar 

  77. Chen, Y., Zhao, X., Zhang, L., Kang, J.-W.: Multiview and 3D Video Compression Using Neighboring Block Based Disparity Vector. IEEE Trans Multimedia 18(4), 576–589 (2016)

    Google Scholar 

  78. Gao, Y., Cheung, G., Maugey, T., Frossard, P., Liang, J.: Encoder-driven inpainting strategy in multiview video compression. IEEE Trans. Image Process. 25, 134–149 (2016)

    Article  MathSciNet  Google Scholar 

  79. Merkle, P., Bartnik, C., Müller, K., Marpe, D., Wiegand, T.: 3D video: Depth coding based on inter-component prediction of block partitions. 29th Picture Coding Symposium, PCS 2012, Kraków, May 2012, pp. 149–152

    Google Scholar 

  80. Shao, F., Lin, W., Jiang, G., Yu, M.: Low-Complexity Depth Coding by Depth Sensitivity Aware Rate-Distortion Optimization. IEEE Trans. Broadcast. 62(1), 94–102 (2016)

    Article  Google Scholar 

  81. Hannuksela, M.M., Rusanovskyy D., Su, W., Chen, L., Li, R., Aflaki, P., Lan. D., Joachimiak, M., Li, H., Gabbouj, M.: Multiview-Video-Plus-Depth Coding Based on the Advanced Video Coding Standard. IEEE Trans Image Proces 22(9), 3449–3458 (2013)

    Google Scholar 

  82. Stankowski, J., Kowalski, L., Samelak, J., Domański, M., Grajek, T.: Krzysztof Wegner. 3D-HEVC Extension for Circular Camera Arrangements. In: 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, 3DTV-Con 2015, Lisbon, Portugal, 8-10 July 2015

    Google Scholar 

  83. Samelak, J., Stankowski, J., Domański, M.: Adaptation of the 3D-HEVC coding tools to arbitrary locations of cameras. Int. Conf. Signals Elect. Syst. Kraków (2016)

    Google Scholar 

  84. Chen, Y., Wang, Y., Ugur, K., Hannuksela, M., Lainema, J., Gabbouj, M.: The emerging MVC standard for 3D video services. EURASIP J. Adv. Signal Process. 2009, 1–13 (2008)

    Google Scholar 

  85. Chen, Y., Hannuksela, M., Suzuki, T., Hattori, S.: Overview of the MVC + D 3D video coding standard. J. Visual Commun. Image Rep. (2013)

    Google Scholar 

  86. Wegner, K., Stankiewicz, O., Domański, M.: Fast View Synthesis using platelet-based depth representation. In: 21th International Conference on Systems, Signals and Image Processing, IWSSIP 2014, Dubrovnik, Croatia, May 2014

    Google Scholar 

  87. Merkle, P., Muller, K., Marpe, D., Wiegand, T.: Depth intra coding for 3d video based on geometric primitives. IEEE Trans Circuits Syst Video Technol (2015)

    Google Scholar 

  88. Graziosi, D., Rodrigues, N., Pagliari, C., Faria, S., Silva, E., Carvalho, M.: Compressing depth maps using multiscale recurrent pattern image coding. Electron. Lett. 46(5), 340–341 (2010)

    Article  Google Scholar 

  89. Lucas, L., Wegner, K., Rodrigues, N., Pagliari, C., Silva, E., Faria, S.: Intra Predictive Depth Map Coding using Flexible Block Partitioning. IEEE Trans. Image Process. 24(11), 4055–4068 (2015)

    Article  MathSciNet  Google Scholar 

  90. Deng, H., Yu, L., Qui, J., Zhang, J: A Joint Texture/Depth Edge-Directed Up-Sampling Algorithm for Depth Map Coding. In: Proceedings of the IEEE International Conference on Multimedia and Expo, July 2012

    Google Scholar 

  91. Aflaki, P., Hannuksela, M., Homayouni, M., Gabbouj, M.: Joint depth and texture filtering targeting MVD compression. In: Proceedings of the 2014 IEEE Visual Communications and Image Processing Conference, pp. 410–413 (2014)

    Google Scholar 

  92. Zhang, J., Hannuksela, M., Li, H.: Joint Multiview Video Plus Depth Coding. In: Proceedings of the 2010 IEEE 17th International Conference on Image Processing, September 2010

    Google Scholar 

  93. Tao, S., Chen, Y., Hannuksela, M., Wang, Y., Gabbouj, M., Li, H.: Joint Texture and Depth Map Video Coding Based on the Scalable Extension of H.264/AVC. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2353–2356, May 2009

    Google Scholar 

  94. “Report on Experimental Framework for 3D Video Coding,” ISO/IEC JTC1/SC29/WG11, N11631, October 2010

    Google Scholar 

  95. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays. ACM Trans. Graphics 24(3), 765–776 (2005)

    Article  Google Scholar 

  96. Tanimoto, M., Fujii, T., Senoh, T., Aoki, T., Sugihara, Y.: Test Sequences with Different Camera Arrangements for Call for Proposals on Multiview Video Coding. ISO/IEC JTC1/SC29/WG11/M12338, Poznan (2005)

    Google Scholar 

  97. Balogh, T., Kovács, P.T.: Real-time 3D light field transmission. In: Proceedings on Real-Time Image and Video Processing, Proc. SPIE 7724, Brussels (2010)

    Google Scholar 

  98. Zilly, F., Schoberl, M., Ziegler, M., Keinert, J., Foessel, S.: Light-Field Acquisition System That Facilitates Camera and Depth-of-Field Compositing in Post-Production. SMPTE Motion Imaging Journal 124(1), 16–21 (2015)

    Article  Google Scholar 

  99. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph 32(4), art. 73 Jul 2013

    Google Scholar 

  100. Jones, A., McDowall, I., Yamada, H., Bolas, M., Debevec, P.: Rendering for an interactive 360° light field display. ACM Trans. Graphics 26(3) art. 40 Jul 2007

    Google Scholar 

  101. Bo, L., Heng, L., Koser, K., Pollefeys, M.: A multiple-camera system calibration toolbox using a feature descriptor-based calibration pattern. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 1301–1307, 3-7 Nov. 2013. https://doi.org/10.1109/iros.2013.6696517

  102. Call for Evidence on Free-Viewpoint Television: Super-Multiview and Free Navigation—update. ISO/IEC JTC1/SC29/WG11 Doc. N15733, October 2015, Geneva, Switzerland

    Google Scholar 

  103. Georgiev, T., Lumsdaine, A.: Focused plenoptic camera and rendering. J. Electron. Imaging 19, 021106–021106 (2010). https://doi.org/10.1117/1.3442712

  104. Xiao, X., Javidi, B., Martinez-Corral, M., Stern, A.: Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. Appl. Opt. 52, 546–560 (2013)

    Google Scholar 

  105. Levoy, M., Hanrahan, P.: Light field rendering. In: Proc. 23rd Annu. Conf. Comput. Graph. Interact. Tech. - SIGGRAPH ′96. New Orleans, LA, US, pp 31–42 (1996)

    Google Scholar 

  106. Lippmann, G.: Épreuves Réversibles Donnant la Sensation du Relief. J. Phys. Théorique. Appliquée 7, 821–825 (1908)

    Google Scholar 

  107. Ng, R.: Fourier slice photography. ACM, New York, NY, USA, pp 735–744 (2005)

    Google Scholar 

  108. Arai, J.: Integral three-dimensional television (FTV Seminar). ISO/IEC JTC1/SC29/WG11 Doc. MPEG M34199, Sapporo, Japan (2014)

    Google Scholar 

  109. Ebrahimi, T.: JPEG PLENO Abstract and executive summary. ISO/IEC JTC 1/SC 29/WG1 Doc. JPEG N6922, Sydney, Australia (2015)

    Google Scholar 

  110. Tehrani, M.P., Shimizu, S., Lafruit, G. et al.: Use cases and requirements on free-viewpoint velevision (FTV). ISO/IEC JTC1/SC29/WG11 MPEG Doc. MPEG N14104, Geneva, Switzerland (2013)

    Google Scholar 

  111. Sullivan, G.J., Ohm, J.-R., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012)

    Google Scholar 

  112. Conti, C., Lino, J., Nunes, P., et al.: Spatial prediction based on self-similarity compensation for 3D holoscopic image and video coding. Proc - Int. Conf. Image Process ICIP (2011). https://doi.org/10.1109/ICIP.2011.6116721

  113. Conti, C., Nunes, P., Soares, L.D.: New HEVC prediction modes for 3D holoscopic video coding. In: 2012 19th IEEE Int. Conf. Image Process. Orlando, FL, US, pp 1325–1328 (2012)

    Google Scholar 

  114. Conti, C., Soares, L.D., Nunes, P.: HEVC-based 3D holoscopic video coding using self-similarity compensated prediction. Signal Process. Image Commun. (2016).https://doi.org/10.1016/j.image.2016.01.008

  115. Lucas, L.F.R., Conti, C., Nunes, P., et al.: Locally linear embedding-based prediction for 3D holoscopic image coding using HEVC. In: 2014 Proc. 22nd Eur. Signal Process. Conf. Lisbon, Portugal, pp 11–15 (2014)

    Google Scholar 

  116. Li, Y., Sjostrom, M., Olsson, R., Jennehag, U.: Coding of focused plenoptic contents by displacement intra prediction. IEEE Trans. Circuits Syst. Video Technol. 26, 1308–1319 (2016). https://doi.org/10.1109/TCSVT.2015.2450333

  117. Adedoyin, S., Fernando, W.A.C., Aggoun, A., Kondoz, K.M.: Motion and disparity estimation with self adapted evolutionary strategy in 3D video coding. IEEE Trans. Consum. Electron. 53, 1768–1775 (2007). https://doi.org/10.1109/TCE.2007.4429282

  118. Dick, J., Almeida, H., Soares, L.D., Nunes, P.: 3D Holoscopic video coding using MVC. In: 2011 IEEE EUROCON - Int. Conf. Comput. as a Tool. Lisbon, Portugal, pp 1–4 (2011)

    Google Scholar 

  119. Shi, S., Gioia, P., Madec, G.: Efficient compression method for integral images using multi-view video coding. In: 2011 18th IEEE Int. Conf. Image Process. Brussels, Belgium, pp 137–140 (2011)

    Google Scholar 

  120. Bishop, T.E., Favaro, P.: Plenoptic depth estimation from multiple aliased views. In: 2009 IEEE 12th Int. Conf. Comput. Vis. Work. ICCV Work. Kyoto, Japan, pp 1622–1629 (2009)

    Google Scholar 

  121. Conti, C., Nunes, P., Soares, L.D.: Inter-layer prediction scheme for scalable 3-D holoscopic video coding. IEEE Signal Process. Lett. 20:819¬–822 (2013). https://doi.org/10.1109/LSP.2013.2267234

  122. Piao, Y., Yan, X.: Sub-sampling elemental images for integral imaging compression. In: 2010 Int. Conf. Audio, Lang. Image Process. Shanghai, China, pp 1164–1168 (2010)

    Google Scholar 

  123. Choudhury, C., Chaudhuri, S.: Disparity based compression technique for focused plenoptic images. In: Proc. 2014 Indian Conf. Comput. Vis. Graph. Image Process. - ICVGIP ′14. Bangalore, India, pp 1–6 (2014)

    Google Scholar 

  124. Graziosi, D.B., Alpaslan, Z.Y., El-Ghoroury, H.S.: Depth assisted compression of full parallax light fields. In: Proc. SPIE 9391, Stereosc. Displays Appl. XXVI. San Francisco, CA, US (2015)

    Google Scholar 

  125. Li, Y., Sjöström, M., Olsson, R.: Coding of plenoptic images by using a sparse set and disparities. In: 2015 IEEE Int. Conf. Multimed. Expo. IEEE, pp 1–6 (2015)

    Google Scholar 

Download references

Acknowledgements

This book chapter was partially supported by COST Action IC1105—3D-ConTourNet.

The book chapter was partially supported by National Science Centre, Poland according to the decision DEC-2012/05/B/ST7/01279.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Domański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domański, M. et al. (2019). Emerging Imaging Technologies: Trends and Challenges. In: Assunção, P., Gotchev, A. (eds) 3D Visual Content Creation, Coding and Delivery. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-77842-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77842-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77841-9

  • Online ISBN: 978-3-319-77842-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics