Skip to main content

Understanding of Rock Material Behavior Under Dynamic Loadings Based on Incubation Time Criteria Approach

  • Conference paper
  • First Online:
Physical and Mathematical Modeling of Earth and Environment Processes (PMMEEP 2017)

Abstract

Different rock material dynamic laboratory tests have been analyzed with the help of incubation time criteria approach. As a result of made calculations incubation times for such rocks like granite, marble, limestone, sandstone and traverline have been estimated. This parameter according to criteria theory rule material behavior under high rate loadings. Effects of effective porosity and anisotropy on incubation time value have been considered. Experiments under high rate loadings with different saturation and temperatures have been demonstrated influence of physical conditions changes on incubation time parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asprone, D., Cadoni, E., Prota, A., Manfredi, G.: Dynamic behavior of a Mediterranean natural stone under tensile loading. Int. J. Rock Mech. Min. Sci. 46, 514–520 (2009)

    Article  Google Scholar 

  2. Bragov, A.M., Petrov, Yu.V., Karihaloo, B.L., Konstantinov, A.Yu., Lamzin, D.A., Lomunov, A.K., Smirnov, I.V.: Dynamic strengths and toughness of an ultra-high performance fibre reinforced concrete. Eng. Fract. Mech. 110, 477–488 (2013)

    Article  Google Scholar 

  3. Bragov, A.M., Karihaloo, B.L., Petrov, Yu.V., Konstantinov, A.Yu., Lamzin, D.A., Lomunov, A.K., Smirnov, I.V.: High-rate deformation and fracture of fiber reinforced concrete. J. Appl. Mech. Tech. Phys. 53(6), 926–933 (2012)

    Article  ADS  Google Scholar 

  4. Bragov, A.M., Konstantinov, A.Yu., Petrov, Yu.V., Evstifeev, A.D.: Structural-temporal approach for dynamic strength characterization of rock. Mater. Phys. Mech. 23, 61–65 (2015)

    Google Scholar 

  5. Bratov, V.A., Gruzdkov, A.A., Krivosheev, S.I., Petrov, Yu.V.: Energy balance in the crack growth initiation under pulsed-load conditions. Dokl. Phys. 49(5), 338–341 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cai, M., Kaiser, P.K., Suorineni, F., Su, K.: A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys. Chem. Earth 32, 907–916 (2007)

    Article  Google Scholar 

  7. Cadoni, E.: Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech. Rock Eng. 43, 667–676 (2010)

    Article  ADS  Google Scholar 

  8. Cho, S.H., Ogata, Y., Kaneko, K.: Strain-rate dependency of the dynamic tensile strength of rock. Int. J. Rock Mech. Min. Sci. 40, 763–777 (2003)

    Article  Google Scholar 

  9. Dai, F., Huang, S., Xia, K., Tan, Z.: Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech. Rock Eng. 43, 657–666 (2010)

    Article  ADS  Google Scholar 

  10. Dai, F., Xia, K., Tang, L.: Rate dependence of the flexural tensile strength of Laurentian granite. Int. J. Rock Mech. Min. Sci. 47(3), 469–475 (2010)

    Article  Google Scholar 

  11. Dai, F., Chen, R., Iqbal, M.J., Xia, K.: Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int. J. Rock Mech. Min. Sci. 47, 606–613 (2010)

    Article  Google Scholar 

  12. Dai, F., Xia, K.: Loading rate dependence of tensile strength anisotropy of Barre granite. Pure. appl. Geophys. 167, 1419–1432 (2010)

    Article  ADS  Google Scholar 

  13. Dufta, P.K., Kim, K.O.: High-strain- rate tensile behavior of sedimentary and igneous rocks at low temperatures. CRREL Report, 93-16 (1993)

    Google Scholar 

  14. Goldsmith, W., Sackman, J.L., Ewert, C.: Static and dynamic fracture strength of Barre granite. Int. J. Rock Mech. Lin. Sci. Geomech. Abstr. 13, 303–309 (1976)

    Article  Google Scholar 

  15. Howe, S.P., Goldsmith, W., Sackman, J.L.: Macroscopic static and of Yule marble. Exp. Mech. 8, 337–346 (1974)

    Article  Google Scholar 

  16. Huang, S., Chen, R., Xia, K.W.: Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus. J. Rock Mech. Geotechn. Eng. 2(2), 162–168 (2010)

    Article  Google Scholar 

  17. Huang, S., Xia, K., Yan, F., Feng, X.: An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech. Rock Eng. 43, 677–683 (2010)

    Article  ADS  Google Scholar 

  18. Khan, A.S., Irani, F.K.: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite. Mech. Mater. 6, 285–292 (1987)

    Article  Google Scholar 

  19. Kubota, S., Ogata, Y., Wada, Y., Simangunsong, G., Shimada, H., Matsui, K.: Estimation of dynamic tensile strength of sandstone. Int. J. Rock Mech. Min. Sci. 45, 397–406 (2008)

    Article  Google Scholar 

  20. Lu, D., Wang, G., Du, X., Wang, Y.: A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete. Int. J. Impact Eng. 103, 124–137 (2017)

    Article  Google Scholar 

  21. Morozov, N.F., Petrov, Yu.V.: Dynamics of fracture. Springer, Berlin (2000)

    Google Scholar 

  22. Petrov, Yu.V., Utkin, A.A.: Dependence of the dynamic strength on loading rate. Mater. Sci. 25, 153–156 (1989)

    Article  Google Scholar 

  23. Petrov, Yu.V.: On the “quantum” nature of dynamic fracture in brittle solids. Sov. Phys. Dokl. 36, 802–804 (1991)

    ADS  Google Scholar 

  24. Petrov, Yu.V., Morozov, N.F.: On the modeling of fracture of brittle solids. J. Appl. Mech. 61(3), 710–712 (1994)

    Article  ADS  Google Scholar 

  25. Petrov, Yu.V., Morozov, N.F., Smirnov, V.I.: Structural macromechanics approach in dynamics of fracture. Fatigue Fract. Eng. Mater. Struct. 26, 363–372 (2003)

    Article  Google Scholar 

  26. Petrov, Yu.V.: Incubation time criterion and the pulsed strength of continua: fracture, cavitation, and electrical breakdown. Dokl. Phys. 49, 246–249 (2004)

    Article  ADS  Google Scholar 

  27. Petrov, Yu.V., Karihaloo, B.L., Bratov, V.V., Bragov, A.M.: Multi-scale dynamic fracture model for quasi-brittle materials. Int. J. Eng. Sci. 61, 3–9 (2012)

    Article  Google Scholar 

  28. Smirnov, I., Konstantinov, A.Yu., Lomunov, A., Bragov, A., Petrov, Yu.V.: The structural temporal approach to dynamic and quasi-static strengthof rocks and concrete (2017)

    Google Scholar 

  29. Volkov, G.A., Bratov, V.A., Gruzdkov, A.A., Babitsky, V.I., Petrov, Yu.V., Silberschmidt, V.V.: Energy based analysis of ultrasonically assisted turning. Shock Vib. 18, 333–341 (2011)

    Google Scholar 

  30. Wang, Q.Z., Li, W., Xie, H.P.: Dynamic split tensile test of Flattened Brazilian Disc of rock with SHPB setup. Mech. Mater. 41, 252–260 (2009)

    Article  Google Scholar 

  31. Yan, F., Feng, X., Chen, R., Xia, K., Jin, C.: Dynamic tensile failure of the rock interface between tuff and basalt. Rock Mech. Rock Eng. 45, 341–348 (2012)

    Article  ADS  Google Scholar 

  32. Zhang, Q.B., Zhao, J.: A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 47(4), 1411–1478 (2013)

    Article  ADS  Google Scholar 

  33. Zhang, Q.B., Zhao, J.: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int. J. Rock Mech. Min. Sci. 60, 423–439 (2013)

    Google Scholar 

  34. Zhao, J., Li, H.B.: Experimental determination of dynamic tensile properties of a granite. Int. J. Rock Mech. Min. Sci. 37, 861–866 (2000)

    Article  Google Scholar 

  35. Yavuz, H., Tufekci, K., Kayacan, R., Cevizci, H.: Predicting the dynamic compressive strength of carbonate rocks from quasi-static properties. Exp. Mech. 53, 367–376 (2013)

    Article  Google Scholar 

  36. Demirdag, S., Tufekci, K., Kayacan, R., Yavuz, H., Altindag, R.: Dynamic mechanical behavior of some carbonate rocks. Int. J. Rock Mech. Min. Sci. 47, 307–312 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (grant 17-11-01053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Martemyanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martemyanov, A.N., Petrov, Y.V. (2018). Understanding of Rock Material Behavior Under Dynamic Loadings Based on Incubation Time Criteria Approach. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-77788-7_25

Download citation

Publish with us

Policies and ethics