Skip to main content

IAQ Evaluation Using an IoT CO2 Monitoring System for Enhanced Living Environments

  • Conference paper
  • First Online:
Trends and Advances in Information Systems and Technologies (WorldCIST'18 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 746))

Included in the following conference series:

Abstract

Indoor air quality (IAQ) parameters are not only directly related to occupational health but also have a huge impact on quality of life. In particular, besides having a very influence on the public health as it may cause a great variety of health effects such as headaches, dizziness, restlessness, difficulty breathing, increase heart rate, elevated blood pressure, coma and asphyxia, carbon dioxide (CO2) can be used as an important index of IAQ. In fact, due to people spend about 90% of our lives indoors, it is extremely important to monitor the CO2 concentration in real-time to detect problems in the IAQ in order to quickly take interventions in the building to increase the IAQ. The variation of CO2 in indoor living environments is in most situations related to the low air renewal inside buildings. CO2 levels over 1000 ppm, indicate a potential problem with indoor air. This paper aims to present iAirC a solution for CO2 real-time monitoring based on Internet of Things (IoT) architecture. This solution is composed by a hardware prototype for ambient data collection and a web and smartphone compatibility for data consulting. This system performs real-time data collection that is stored in a ThingSpeak platform and has smartphone compatibility which allows easier access to data in real time. The user can also check the latest data collected by the system and access to the history of the CO2 levels in a graphical representation. iAirC uses an open-source ESP8266 for Wi-Fi 2.4 GHZ as processing and communication unit and incorporates a CO2 sensor as sensing unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Universal open platform and reference specification for ambient assisted living. http://www.universaal.org/

  2. Koleva, P., Tonchev, K., Balabanov, G., Manolova, A., Poulkov, V.: Challenges in designing and implementation of an effective Ambient Assisted Living system. In: 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), pp. 305–308 (2015)

    Google Scholar 

  3. Seguel, J.M., Merrill, R., Seguel, D., Campagna, A.C.: Indoor air quality. Am. J. Lifestyle Med. 11, 284–295 (2016). https://doi.org/10.1177/1559827616653343

    Article  Google Scholar 

  4. Bruce, N., Perez-Padilla, R., Albalak, R.: Indoor air pollution in developing countries: a major environmental and public health challenge. Bull. World Health Organ. 78(9), 1078–1092 (2000)

    Google Scholar 

  5. Jones, A.P.: Indoor air quality and health. Atmos. Environ. 33(28), 4535–4564 (1999)

    Article  Google Scholar 

  6. Caragliu, A., Del Bo, C., Nijkamp, P.: Smart cities in Europe. J. Urban Technol. 18(2), 65–82 (2011)

    Article  Google Scholar 

  7. Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., Oliveira, A.: Smart cities and the future internet: towards cooperation frameworks for open innovation. In: Domingue, J., et al. (eds.) The Future Internet, vol. 6656, pp. 431–446. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Chourabi, H., et al.: Understanding smart cities: an integrative framework, pp. 2289–2297 (2012)

    Google Scholar 

  9. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  10. Batty, M., et al.: Smart cities of the future. Eur. Phys. J. Spec. Top. 214(1), 481–518 (2012)

    Article  Google Scholar 

  11. Hernández-Muñoz, J.M., et al.: Smart cities at the forefront of the future internet. In: Domingue, J., et al. (eds.) The Future Internet, vol. 6656, pp. 447–462. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Yu, T.-C., et al.: Wireless sensor networks for indoor air quality monitoring. Med. Eng. Phys. 35(2), 231–235 (2013)

    Article  Google Scholar 

  13. Myers, S.S., et al.: Increasing CO2 threatens human nutrition. Nature 510(7503), 139–142 (2014)

    Article  Google Scholar 

  14. Tran, T.V., Dang, N.T., Chung, W.-Y.: Battery-free smart-sensor system for real-time indoor air quality monitoring. Sens. Actuators B Chem. 248, 930–939 (2017)

    Article  Google Scholar 

  15. Abraham, S., Li, X.: A cost-effective wireless sensor network system for indoor air quality monitoring applications. Procedia Comput. Sci. 34, 165–171 (2014)

    Article  Google Scholar 

  16. Kim, J.-Y., Chu, C.-H., Shin, S.-M.: ISSAQ: an integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 14(12), 4230–4244 (2014)

    Article  Google Scholar 

  17. Marques, G., Pitarma, R.: An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health 13(11), 1152 (2016)

    Article  Google Scholar 

  18. Pitarma, R., Marques, G., Caetano, F.: Monitoring indoor air quality to improve occupational health. In: New Advances in Information Systems and Technologies, pp. 13–21. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  19. Marques, G., Pitarma, R.: Health informatics for indoor air quality monitoring, pp. 1–6 (2016)

    Google Scholar 

  20. Pitarma, R., Marques, G., Ferreira, B.R.: Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 41(2), 23 (2017)

    Article  Google Scholar 

  21. Marques, G., Pitarma, R.: Monitoring health factors in indoor living environments using internet of things. In: Presented at the World Conference on Information Systems and Technologies, pp. 785–794 (2017)

    Google Scholar 

  22. Marques, G., Pitarma, R.: Monitoring and control of the indoor environment, pp. 1–6 (2017)

    Google Scholar 

  23. Lee, S., Chang, M.: Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41(1–2), 109–113 (2000)

    Article  Google Scholar 

  24. Bhattacharya, S., Sridevi, S., Pitchiah, R.: Indoor air quality monitoring using wireless sensor network, pp. 422–427 (2012)

    Google Scholar 

  25. Seppanen, O.A., Fisk, W.J., Mendell, M.J.: Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 9(4), 226–252 (1999)

    Article  Google Scholar 

  26. Ramachandran, G., et al.: Indoor air quality in two urban elementary schools—measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity. J. Occup. Environ. Hyg. 2(11), 553–566 (2005)

    Article  Google Scholar 

  27. Scheff, P.A., Paulius, V.K., Huang, S.W., Conroy, L.M.: Indoor air quality in a middle school, Part I: use of CO2 as a tracer for effective ventilation. Appl. Occup. Environ. Hyg. 15(11), 824–834 (2000)

    Article  Google Scholar 

  28. Wargocki, P., Wyon, D.P., Sundell, J., Clausen, G., Fanger, P.O.: The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air 10(4), 222–236 (2000)

    Article  Google Scholar 

  29. Espressif Systems, ESP8266EX Datasheet (2015). http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf

  30. Neuburg, M.: iOS 7 Programming Fundamentals: Objective-C, Xcode, and Cocoa Basics. O’Reilly Media Inc, Sebastopol (2013)

    Google Scholar 

  31. Lacis, A.A., Schmidt, G.A., Rind, D., Ruedy, R.A.: Atmospheric CO2: principal control knob governing earth’s temperature. Science 330(6002), 356–359 (2010)

    Article  Google Scholar 

  32. Awbi, H.B.: Ventilation of Buildings. Taylor & Francis, London (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Pitarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marques, G., Pitarma, R. (2018). IAQ Evaluation Using an IoT CO2 Monitoring System for Enhanced Living Environments. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) Trends and Advances in Information Systems and Technologies. WorldCIST'18 2018. Advances in Intelligent Systems and Computing, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-319-77712-2_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77712-2_112

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77711-5

  • Online ISBN: 978-3-319-77712-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics