Skip to main content

Histological and Elemental Changes in Ischemic Stroke

  • Chapter
  • First Online:
Acute Neuronal Injury

Abstract

Stroke is a leading cause of serious long-term disability in adults and a leading cause of death in developed nations. Following an ischemic stroke the metabolic profile of the affected tissue is significantly altered, with the infarct representing the most severely affected tissue, and the surrounding penumbra, or peri-infarct zone (PIZ), containing a gradient of metabolic states progressing from severely impacted toward an otherwise healthy profile. The penumbra contains potentially salvageable tissue and is the focus in many stroke treatments. In this chapter, we employ the photothrombotic stroke model (a widely used animal model for studying focal ischemia) to study the histopathological and bioelemental changes that occur post-stroke. Synchrotron-based X-ray fluorescence imaging allows simultaneous measurement of multiple elements in situ within biological tissues, as their naturally-occurring concentrations. Images of elemental distributions are compared to conventional histopathological changes in the infarct and penumbra. Understanding the bioelemental changes associated with the post-stroke brain provides opportunities to expand our understanding of the underlying cellular and tissue changes associated with ischemic stroke and can ultimately be used to guide development of future treatment methods targeting the penumbra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichler M, Walch A (2015) MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Investig 95:422–431

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Siesjö BK (1988) Biological differences between ischemia, hypoglycemia, and epilepsy. Ann Neurol 24:699–707

    Article  CAS  PubMed  Google Scholar 

  • Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N (2006) Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke 37:1334–1339

    Article  PubMed  Google Scholar 

  • Benveniste H (1991) The excitotoxin hypothesis in relation to cerebral ischemia. Cerebrovasc Brain Metab Rev 3:213–245

    PubMed  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 63:1029–1049

    Article  CAS  PubMed  Google Scholar 

  • Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787–2814

    Article  CAS  PubMed  Google Scholar 

  • Caine S, Hackett MJ, Hou H, Kumar S, Maley J, Ivanishvili Z, Suen B, Szmigielski A, Jiang Z, Sylvain NJ, Nichol H, Kelly ME (2016) A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol Dis 91:132–142

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2:396–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford AM (2015) Mblank computer program. Methodologies in XRF Cytometry (Thesis). University of Michigan, Michigan

    Google Scholar 

  • Debonnel G, Beauschesne L, de Montigny C (1989) Domoic acid, the alleged “mussel toxin”, might produce its neurotoxic effect through kainate receptor activation: an electrophysiological study in the rat dorsal hippocampus. Can J Physiol Pharmacol 67:29–33

    Article  CAS  PubMed  Google Scholar 

  • Del Bigio MR (2002) Glial linings of the brain. In: Walz W (ed) The neuronal environment: brain homeostasis in health and disease. Humana Press, Totowa, NJ.

    Google Scholar 

  • Egger AE, Theiner S, Kornauth C, Heffeter P, Berger W, Keppler BK, Hartinger CG (2014) Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics 6:1616–1625

    Article  CAS  PubMed  Google Scholar 

  • Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369

    Article  PubMed  Google Scholar 

  • Fisher M (1997) Characterizing the target of acute stroke therapy. Stroke 28:866–872

    Article  CAS  PubMed  Google Scholar 

  • Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther 9:3445–3454

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hackett MJ, McQuillan JA, El-Assaad F, Aitken JB, Levina A, Cohen DD, Siegele R, Carter EA, Grau GE, Hunt NH, Lay PA (2011) Chemical alterations to murine brain tissue induced by formalin fixation: implications for biospectroscopic imaging and mapping studies of disease pathogenesis. Analyst 136:2941–2952

    Article  CAS  PubMed  Google Scholar 

  • Hackett MJ, Smith SE, Paterson PG, Nichol H, Pickering IJ, George GN (2012) X-ray absorption spectroscopy at the sulfur K-edge: a new tool to investigate the biochemical mechanisms of neurodegeneration. ACS Chem Neurosci 3:178–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett MJ, Britz CJ, Paterson PG, Nichol H, Pickering IJ, George GN (2015) In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain. ACS Chem Neurosci 6:226–238

    Article  CAS  PubMed  Google Scholar 

  • Hackett MJ, Sylvain NJ, Hou H, Caine S, Alaverdashvili M, Pushie MJ, Kelly ME (2016) Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia. Anal Chem 88:10949–10956

    Article  CAS  PubMed  Google Scholar 

  • Hansen AJ, Olsen CE (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand 108:355–365

    Article  CAS  PubMed  Google Scholar 

  • Harris HH, Vogt S, Eastgate H, Legnini DG, Hornberger B, Cai Z, Lai B, Lay PA (2008) Migration of mercury from dental amalgam through human teeth. J Synchrotron Radiat 15:123–128

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD (1992) Experimental evidence of ischemic thresholds and functional recovery. Stroke 23:1668–1672

    Article  CAS  PubMed  Google Scholar 

  • Hossmann K-A (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Article  CAS  PubMed  Google Scholar 

  • Jensen AN, Jenson LT (2014) Manganese transport, trafficking and function in invertebrates. Manganese in health and disease. RSC Publishing, London, pp 1–33

    Book  Google Scholar 

  • Kalimo H, Rehncrona S, Söderfeldt H, Olsson Y, Siesjö B (1981) Brain lactic acidosis and ischemic cell damage. 2. Histopathology. J Cereb Blood Flow Metab 1:313–327

    Article  CAS  PubMed  Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan B, Brint S, Tanabe J, Jacewicz M, Wang XJ, Pulsinelli W (1991) Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 22:1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Karim MR, Petering DH (2016) Newport Green, a fluorescent sensor of weakly bound cellular Zn(2+): competition with proteome for Zn(2). Metallomics 8:201–210

    Article  CAS  PubMed  Google Scholar 

  • Kim GW, Sugawara T, Chan PH (2000) Involvement of oxidative stress and caspase-3 in cortical infarction after photothrombotic ischemia in mice. J Cereb Blood Flow Metab 20:1690–1701

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Iida Y, Abe J, Ueda M, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H (2006) Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model. J Pharmacol Sci 100:142–148

    Article  CAS  PubMed  Google Scholar 

  • Labat-gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp. https://doi.org/10.3791/50370

  • Latchaw RE, Yonas H, Hunter GJ, Yuh WT, Ueda T, Sorensen AG, Sunshine JL, Biller J, Wechsler L, Higashida R, Hademenos G, Council on Cardiovascular Radiology of the American Heart Association (2003) Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 34:1084–1104

    Article  PubMed  Google Scholar 

  • Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Miao P, Wang J, Yuan F, Guan Y, Tang Y, He X, Wang Y, Yang GY (2013) Surgery-related thrombosis critically affects the brain infarct volume in mice following transient middle cerebral artery occlusion. PLoS ONE 8:e75561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl PA, Moore MJ (2016) Labile low-molecular-mass metal complexes in mitochondria: trials and tribulations of a burgeoning field. Biochemistry 55:4140–4153

    Article  CAS  PubMed  Google Scholar 

  • Lins BR, Pushie JM, Jones M, Howard DL, Howland JG, Hackett MJ (2016) Mapping alterations to the endogenous elemental distribution within the lateral ventricles and choroid plexus in brain disorders using X-ray fluorescence imaging. PLoS ONE 11:e0158152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011:464701

    PubMed  PubMed Central  Google Scholar 

  • Menzie J, Prentice H, Wu JY (2013) Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci 3:877–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Writing Group Members (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e360

    Article  PubMed  Google Scholar 

  • Nicholson C, Kamali-Zare P, Tao L (2011) Brain extracellular space as a diffusion barrier. Comput Vis Sci 14:309–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak TS Jr, Jacewicz M (1994) The heat shock/stress response in focal cerebral ischemia. Brain Pathol 4:67–76

    Article  PubMed  Google Scholar 

  • Paschen W (1996) Glutamate excitotoxicity in transient global cerebral ischemia. Acta Neurobiol Exp (Wars) 56:313–322

    CAS  Google Scholar 

  • Popescu BF, Frischer JM, Webb SM, Tham M, Adiele RC, Robinson CA, Fitz-Gibbon PD, Weigand SD, Metz I, Nehzati S, George GN, Pickering IJ, Brück W, Hametner S, Lassmann H, Parisi JE, Yong G, Lucchinetti CF (2017) Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol 134:45–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puljak L, Kilic G (2006) Emerging roles of chloride channels in human diseases. Biochim Biophys Acta 1762:404–413

    Article  CAS  PubMed  Google Scholar 

  • Pushie MJ, Pickering IJ, Martin GR, Tsutsui S, Jirik FR, George GN (2011) Prion protein expression level alters regional copper, iron and zinc content in the mouse brain. Metallomics 3:206–214

    Article  CAS  PubMed  Google Scholar 

  • Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN (2014) Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 114:8499–8541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  • Robison G, Zakharova T, Fu S, Jiang W, Fulper R, Barrea R, Marcus MA, Zheng W, Pushkar Y (2012) X-ray fluorescence imaging: a new tool for studying manganese neurotoxicity. PLoS ONE 7:e48899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selim MH, Ratan RR (2004) The role of iron neurotoxicity in ischemic stroke. Ageing Res Rev 3:345–353

    Article  CAS  PubMed  Google Scholar 

  • Siesjö BK, Katsura K, Kristián T (1996) Acidosis-related damage. Adv Neurol 71:209–233

    PubMed  Google Scholar 

  • Smith ML, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol 64:319–332

    Article  CAS  PubMed  Google Scholar 

  • Song J, Park J, Oh Y, Lee JE (2015) Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression. Oxidative Med Cell Longev 2015:426069

    Google Scholar 

  • Spasojevic I, Mojovic M, Stevic Z, Spasic SD, Jones DR, Morina A, Spasic MB (2010) Bioavailability and catalytic properties of copper and iron for Fenton chemistry in human cerebrospinal fluid. Redox Rep 15:29–35

    Article  CAS  PubMed  Google Scholar 

  • Sullivan B, Robison G, Osborn J, Kay M, Thompson P, Davis K, Zakharova T, Antipova O, Pushkar Y (2017) On the nature of the Cu-rich aggregates in brain astrocytes. Redox Biol 11:231–239

    Article  CAS  PubMed  Google Scholar 

  • Thrift AG, Thayabaranathan T, Howard G, Howard VJ, Rothwell PM, Feigin VL, Norrving B, Donnan GA, Cadilhac DA (2017) Global stroke statistics. Int J Stroke 12:13–32

    Article  PubMed  Google Scholar 

  • Tombaugh GC, Sapolsky RM (1993) Evolving concepts about the role of acidosis in ischemic neuropathology. J Neurochem 61:793–803

    Article  CAS  PubMed  Google Scholar 

  • Ward J, Marvin R, O'Halloran T, Jacobsen C, Vogt S (2013) Rapid and accurate analysis of an X-ray fluorescence microscopy data set through gaussian mixture-based soft clustering methods. Microsc Microanal 19:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504

    Article  CAS  PubMed  Google Scholar 

  • West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98:11024–11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winship IR, Murphy TH (2008) In vivo calcium imaging reveals functional rewiring of single somatosensory neurons after stroke. J Neurosci 28:6592–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Peng G, Sun D, Xie Y, Xia J, Long H, Hu K, Xiao B (2014) Synchrotron radiation imaging is a powerful tool to image brain microvasculature. Med Phys 41:031907

    Article  PubMed  Google Scholar 

  • Zille M, Farr TD, Przesdzing I, Müller J, Sommer C, Dirnagl U, Wunder A (2012) Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 32:213–231

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AK was a recipient of the College of Medicine Dean’s summer research award. MEBK is the Saskatchewan Clinical Stroke Research Chair and is supported by grants from the Canadian Institutes of Health research (CIHR), the Saskatchewan Health Research Foundation, the Heart and Stroke Foundation, Saskatchewan, and the University of Saskatchewan, College of Medicine. Research described in this chapter was performed in part at the Canadian Light Source, which is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, CIHR, and Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. In addition, the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, was used for this research and is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jake Pushie, M. et al. (2018). Histological and Elemental Changes in Ischemic Stroke. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-77495-4_9

Download citation

Publish with us

Policies and ethics