Skip to main content

Scenario Optimization for MPC

  • Chapter
  • First Online:
Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

In many control problems, disturbances are a fundamental ingredient and in stochastic Model Predictive Control (MPC) they are accounted for by considering an average cost and probabilistic constraints, where a violation of the constraints is accepted provided that the probability of this to happen is kept below a given threshold. This results in a so-called chance-constrained optimization, which however is known for being very hard to deal with. In this chapter, we describe a scheme to approximately solve stochastic MPC using the scenario approach to stochastic optimization. In the scenario approach the probabilistic constraints are replaced by a finite number of constraints, each one corresponding to a realization of the disturbance. Considering a finite sample of realizations makes the problem computationally tractable while the link to the original chance-constrained problem is established by a rigorous theory. With this approach, along with computational tractability, one gains the important advantage that no assumptions on the disturbance, such as boundedness, independence or Gaussianity, are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Often, the total number of parameters is reduced as compared to (4) by imposing internal relation among parameters. This is further discussed in Section 4. When all θ i, j are set to zero, one obtains a classical setup where optimization is directly performed on the control actions.

  2. 2.

    In [12], a mild assumption of existence and uniqueness of the solution (Assumption 1 in [12]) is made which we do not report here for conciseness of presentation. Moreover, paper [12] considers linear cost functions but the extension to generic convex functions is straightforward.

  3. 3.

    Violation of the removed constraints must hold almost surely with respect to the scenario realizations and for any N, see [29] for a broad discussion.

  4. 4.

    In a standard LQG setting, this would require generating M independent Gaussian noise terms for each realization. In the scenario approach, however, there is no limitation on the noise structure and the noise can, e.g., be generated by an ARMA (Auto-Regressive Moving-Average system) or by any other model.

  5. 5.

    Algorithm 1 is a greedy removal algorithm which is here introduced because it can be implemented at relatively low computational cost. Other alternatives exist, and the paper [13] offers an ample discussion on this matter. Algorithm 1 comes to termination provided that at each step an active constraint can be found whose elimination leads to a cost improvement. This is a very mild condition.

  6. 6.

    The value \(\varepsilon = 0.08\) was computed from (7) by bisection instead of using the explicit formula in Theorem 3.

  7. 7.

    It is perhaps worth mentioning that it is possible to obtain better evaluations of constraints satisfaction by using the results of the recent contribution [14]. Specifically, from Theorem 2 of [14], it can be proven for the present setup that, with high confidence 1 − 10−6, it holds that

    $$\displaystyle{\mathbb{P}\left \{\sup _{i=0,\ldots,4}\|u_{\tau +i}\|_{\infty }\leq 1.8\ \ \mbox{ and}\ \ \sup _{i=1,\ldots,5}\|Cx_{\tau +i}\|_{\infty }\leq 1.8\right \} \geq 1 -\varepsilon (s_{N}^{{\ast}}),}$$

    where \(\varepsilon (\cdot )\) is a function defined over the integers given in the paper and s N is the number of the so-called “support constraints” that have been found in the problem at hand. In other words, ɛ(s N ) is not a-priori determined and it is a-posteriori tuned to the number of support constraints. The interested reader is referred to [14] for a more-in-depth discussion. In the present simulation, it turned out that the number of support constraints was 34, resulting in \(1 -\varepsilon (34) = 0.949\).

References

  1. Alamo, T., Tempo, R., Camacho, E.F.: A randomized strategy for probabilistic solutions of uncertain feasibility and optimization problems. IEEE Trans. Autom. Control 54(11), 2545–2559 (2009)

    Article  Google Scholar 

  2. Alamo, T., Tempo, R., Luque, A., Ramirez, D.R.: Randomized methods for design of uncertain systems: sample complexity and sequential algorithms. Automatica 51, 160–172 (2015)

    Article  MathSciNet  Google Scholar 

  3. Batina, I. Model predictive control for stochastic systems by randomized algorithms. PhD thesis, Technische Universiteit Eindhoven (2004)

    Google Scholar 

  4. Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Robustness in Identification and Control. Lecture Notes in Control and Information Sciences, vol. 245, pp. 207–226. Springer, Berlin (1999)

    Google Scholar 

  5. Bemporad, A., Borrelli, F., Morari, M.: Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans. Autom. Control 48(9), 1600–1606 (2003)

    Article  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Boyd, S., Nemirovski, A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. 107(1–2), 63–89 (2006)

    Article  MathSciNet  Google Scholar 

  7. Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005)

    Article  MathSciNet  Google Scholar 

  8. Calafiore, G., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)

    Article  MathSciNet  Google Scholar 

  9. Calafiore, G.C., Fagiano, L.: Robust model predictive control via scenario optimization. IEEE Trans. Autom. Control 58(1), 219–224 (2013)

    Article  MathSciNet  Google Scholar 

  10. Campi, M.C.: Classification with guaranteed probability of error. Mach. Learn. 80, 63–84 (2010)

    Article  MathSciNet  Google Scholar 

  11. Campi, M.C., Carè, A.: Random convex programs with L1-regularization: sparsity and generalization. SIAM J. Control Optim. 51(5), 3532–3557 (2013)

    Article  MathSciNet  Google Scholar 

  12. Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008)

    Article  MathSciNet  Google Scholar 

  13. Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148(2), 257–280 (2011)

    Article  MathSciNet  Google Scholar 

  14. Campi, M.C., Garatti, S.: Wait-and-judge scenario optimization. Math. Program. 167(1), 155–189 (2018)

    Article  MathSciNet  Google Scholar 

  15. Campi, M.C., Calafiore, G., Garatti, S.: Interval predictor models: identification and reliability. Automatica 45(2), 382–392 (2009)

    Article  MathSciNet  Google Scholar 

  16. Campi, M.C., Garatti, S., Prandini, M.: The scenario approach for systems and control design. Annu. Rev. Control 33(2), 149–157 (2009)

    Article  Google Scholar 

  17. Campi, M.C., Garatti, S., Ramponi, F.: Non-convex scenario optimization with application to system identification. In: Proceedings of the 54th IEEE Conference on Decision and Control, Osaka (2015)

    Google Scholar 

  18. Cannon, M., Kouvaritakis, B., Wu, X.: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints. Automatica 45, 167–172 (2009)

    Article  MathSciNet  Google Scholar 

  19. Cannon, M., Kouvaritakis, B., Wu, X.: Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty. IEEE Trans. Autom. Control 54(7), 1626–1632 (2009)

    Article  MathSciNet  Google Scholar 

  20. Carè, A., Garatti, S., Campi, M.C.: Scenario min-max optimization and the risk of empirical costs. SIAM J. Optim. 25(4), 2061–2080 (2015)

    Article  MathSciNet  Google Scholar 

  21. Cinquemani, E., Agarwal, M., Chatterjee, D., Lygeros, J.: Convexity and convex approximations of discrete-time stochastic control problems with constraints. Automatica 47(9), 2082–2087 (2011)

    Article  MathSciNet  Google Scholar 

  22. Crespo, L.G., Giesy, D.P., Kenny, S.P.: Interval predictor models with a formal characterization of uncertainty and reliability. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, pp. 5991–5996 (2014)

    Google Scholar 

  23. de la Peña, D.M., Alamo, T., Bemporad, A., Camacho, F.: A decomposition algorithm for feedback min-max model predictive control. IEEE Trans. Autom. Control 51(10), 1688–1692 (2006)

    Article  MathSciNet  Google Scholar 

  24. de Mello, T.H., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19(1), 56–85 (2014)

    MathSciNet  Google Scholar 

  25. Deori, L., Garatti, S., Prandini, M.: Stochastic constrained control: trading performance for state constraint feasibility. In: Proceedings of the 12th European Control Conference, Zurich (2013)

    Google Scholar 

  26. Deori, L., Garatti, S., Prandini, M.: Stochastic control with input and state constraints: a relaxation technique to ensure feasibility. In: Proceedings of the 54th IEEE Conference on Decision and Control, Osaka (2015)

    Google Scholar 

  27. Deori, L., Garatti, S., Prandini, M.: Trading performance for state constraint feasibility in stochastic constrained control: a randomized approach. J. Frankl. Inst. 354(1), 501–529 (2017)

    Article  MathSciNet  Google Scholar 

  28. Esfahani, P.M., Sutter, T., Lygeros, J.: Performance bounds for the scenario approach and an extension to a class of non-convex programs. IEEE Trans. Autom. Control 60(1), 46–58 (2015)

    Article  MathSciNet  Google Scholar 

  29. Garatti, S., Campi, M.C.: Modulating robustness in control design: principles and algorithms. IEEE Control Syst. Mag. 33(2), 36–51 (2013)

    Article  MathSciNet  Google Scholar 

  30. Goulart, P.J., Kerrigan, E.C., Maciejowski, J.M.: Optimization over state feedback policies for robust control with constraints. Automatica 42(4), 523–533 (2006)

    Article  MathSciNet  Google Scholar 

  31. Grammatico, S., Zhang, X., Margellos, K., Goulart, P.J., Lygeros, J.: A scenario approach for non-convex control design. IEEE Trans. Autom. Control 61(2), 334–345 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx, Feb 2011

  33. Hong, L.J., Hu, Z., Liu, G.: Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Trans. Model. Comput. Simul. 24(4), 22:1–22:37 (2014)

    Google Scholar 

  34. Kothare, M., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10), 1361–1379 (1996)

    Article  MathSciNet  Google Scholar 

  35. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei (2004)

    Google Scholar 

  36. Margellos, K., Goulart, P.J., Lygeros, J.: On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control 59(8), 2258–2263 (2014)

    Article  MathSciNet  Google Scholar 

  37. Margellos, K., Prandini, M., Lygeros, J.: On the connection between compression learning and scenario based single-stage and cascading optimization problems. IEEE Trans. Autom. Control 60(10), 2716–2721 (2015)

    Article  MathSciNet  Google Scholar 

  38. MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28) (2015)

    Google Scholar 

  39. Pagnoncelli, B.K., Vanduffel, S.: A provisioning problem with stochastic payments. Eur. J. Oper. Res. 221(2), 445–453 (2012)

    Article  MathSciNet  Google Scholar 

  40. Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142(2), 399–416 (2009)

    Article  MathSciNet  Google Scholar 

  41. Pagnoncelli, B.K., Reich, D., Campi, M.C.: Risk-return trade-off with the scenario approach in practice: a case study in portfolio selection. J. Optim. Theory Appl. 155(2), 707–722 (2012)

    Article  MathSciNet  Google Scholar 

  42. Petersen, I.R., Tempo, R.: Robust control of uncertain systems: classical results and recent developments. Automatica 50, 1315–1335 (2014)

    Article  MathSciNet  Google Scholar 

  43. Prandini, M., Garatti, S., Lygeros, J.: A randomized approach to stochastic model predictive control. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), December 2012, pp. 7315–7320

    Google Scholar 

  44. Prékopa, A.: Stochastic Programming. Kluwer, Boston (1995)

    Book  Google Scholar 

  45. Prèkopa, A.: Probabilistic programming. In: Ruszczyǹski, A., Shapiro, A. (eds.) Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science, pp. 267–352. Elsevier, London (2003)

    Google Scholar 

  46. Primbs, J.A., Sung, C.H.: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise. IEEE Trans. Autom. Control 54(2), 221–230 (2009)

    Article  MathSciNet  Google Scholar 

  47. Raimondo, D.M., Limon, D., Lazar, M., Magni, L., Camacho, E.F.: Min-max model predictive control of nonlinear systems: a unifying overview on stability. Eur. J. Control 15, 5–21 (2009)

    Article  MathSciNet  Google Scholar 

  48. Schildbach, G., Fagiano, L., Morari, M.: Randomized solutions to convex programs with multiple chance constraints. SIAM J. Optim. 23(4), 2479–2501 (2013)

    Article  MathSciNet  Google Scholar 

  49. Schildbach, G., Fagiano, L., Frei, C., Morari, M.: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica 50(12), 3009–3018 (2014)

    Article  MathSciNet  Google Scholar 

  50. Scokaert, P.O.M., Mayne, D.Q.: Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control 43, 1136–1142 (1998)

    Article  MathSciNet  Google Scholar 

  51. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming: modeling and theory. MPS-SIAM, Philadelphia (2009)

    Book  Google Scholar 

  52. Tempo, R., Calafiore, G., Dabbene, F.: Randomized Algorithms for Analysis and Control of Uncertain Systems, 2nd edn. Springer, London (2013)

    Book  Google Scholar 

  53. van Hessem, D.H., Bosgra, O.H.: Stochastic closed-loop model predictive control of continuous nonlinear chemical processes. J. Proc. Control 16(3), 225–241 (2006)

    Article  Google Scholar 

  54. Vayanos, P., Kuhn, D., Rustem, B.: A constraint sampling approach for multistage robust optimization. Automatica 48(3), 459–471 (2012)

    Article  MathSciNet  Google Scholar 

  55. Zhang, X., Grammatico, S., Schildbach, G., Goulart, P.J., Lygeros, J.: On the sample size of random convex programs with structured dependence on the uncertainty. Automatica 60, 182–188 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco C. Campi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campi, M.C., Garatti, S., Prandini, M. (2019). Scenario Optimization for MPC. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_19

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics