Skip to main content

Robust Optimization for MPC

  • Chapter
  • First Online:
Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

This chapter aims to give a concise overview of numerical methods and algorithms for implementing robust model predictive control (MPC). We introduce the mathematical problem formulation and discuss convex approximations of linear robust MPC as well as numerical methods for nonlinear robust MPC. In particular, we review and compare generic approaches based on min-max dynamic programming and scenario-trees as well as Tube MPC based on set-propagation methods. As this chapter has a strong focus on numerical methods and their practical implementation, we also review a number of existing software packages for set computations, which can be used as building blocks for the implementation of robust MPC solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    the set of compact and convex and compact sets in \(\mathbb{R}^{n}\) are denoted, respectively, by \(\mathbb{K}^{n}\) and \(\mathbb{K}_{\mathrm{C}}^{n}\).

  2. 2.

    We denote with L 2 n the set of n-dimensional L 2-integrable functions. Similarly, W 1,2 n denotes the associated Sobolev space of weakly differentiable and L 2-integrable functions on [0, T] with L 2-integrable weak derivatives.

  3. 3.

    The symbols used for continuous-time models will also be used for discrete-time. Since hybrid models are not considered in this chapter, no confusion should arise from this abuse of notation.

  4. 4.

    In this chapter, \(\mathcal{E}(Q):=\{ Q^{\frac{1} {2} }v\ \vert \ v^{\intercal }v \leq 1\}\) denotes an n-dimensional ellipsoid with positive semidefinite shape matrix Q.

  5. 5.

    The set of symmetric positive semidefinite matrices in \(\mathbb{R}^{n\times n}\) is denoted by \(\mathbb{S}_{+}^{n}\).

  6. 6.

    We use the notation co(S) for the convex hull of a set S.

  7. 7.

    The idea to use affine disturbance feedback parametrization in order to approximate robust MPC can be found, in different variants, in [7, 12, 44] as well as in an early article by J. Löfberg [48].

  8. 8.

    Details about this equivalence statement together with a formal proof in the discrete-time setting can be found in an article by Goulart and Kerrigan [28].

  9. 9.

    The boundary of \(Z \subset \mathbb{R}^{n}\) is denoted by \(\mathop{\mathrm{bd}}\nolimits Z\), while \(\mathcal{S}^{n-1}\) denotes the n-dimensional unit sphere.

  10. 10.

    In practical implementations, the memory allocation policies for function evaluations depend on the compiler and hardware. For MPC applications on embedded hardware one often uses static memory. For example, in modern code-generation based MPC solvers for small-scale systems the memory for all components of a of all online function evaluations is pre-allocated [34].

  11. 11.

    Early set-valued integrators, as, for example, developed by Nedialkov and Jackson [60], are not based on direct algorithmic differentiation based Taylor expansion of the solution trajectory, but more advanced Hermite-Obreschkoff integration schemes, which have the advantage that they can deal more efficiently with stiff dynamic systems. Some of the above-mentioned software packages are also using more advanced integration schemes, but the basic ideas for bounding the reachable set enclosures are, nevertheless, very similar to the easy-to-implement Taylor expansion based method, which has been outlined in this section.

References

  1. Andersson, J., Houska, B., Diehl, M.: Towards a computer algebra system with automatic differentiation for use with object-oriented modelling languages. In: 3rd International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, Oslo, Norway, October 3, pp. 99–105. Linköping University Electronic Press, Linköping (2010)

    Google Scholar 

  2. Andersson, J., Åkesson, J., Diehl, M.: Casadi: a symbolic package for automatic differentiation and optimal control. In: Recent Advances in Algorithmic Differentiation, pp. 297–307. Springer, Berlin (2012)

    Google Scholar 

  3. Aubin, J.P.: Viability theory. Systems & Control: Foundations & Applications. Birkhäuser, Boston (1991)

    Google Scholar 

  4. Bansal, S., Chen, M., Herbert, S., Tomlin, C.J.: Hamilton-Jacobi reachability: a brief overview and recent advances (2017). Preprint. arXiv:1709.07523

    Google Scholar 

  5. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bemporad, A., Borrelli, F., Morari, M.: Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans. Autom. Control 48(9), 1600–1606 (2003)

    Article  MathSciNet  Google Scholar 

  7. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. In: Technical report, Minerva Optimization Center, Technion, Israeli Institute of Technology (2002)

    Google Scholar 

  8. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (1995)

    Google Scholar 

  9. Björnberg, J., Diehl, M.: Approximate robust dynamic programming and robustly stable MPC. Automatica 42(5), 777–782 (2006)

    Article  MathSciNet  Google Scholar 

  10. Blanchini, F., Miani, S.: Set-theoretic methods in control. Systems & Control: Foundations & Applications. Birkhäuser, Boston (2008)

    Google Scholar 

  11. Bompadre, A., Mitsos, A., Chachuat, B.: Convergence analysis of Taylor models and McCormick-Taylor models. J. Glob. Optim. 57, 75–114 (2013)

    Article  MathSciNet  Google Scholar 

  12. Bosgra, O.H., van Hessem, D.H.: A conic reformulation of model predictive control including bounded and stochastic disturbances under state and input constraints. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 4643–4648 (2002)

    Google Scholar 

  13. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Springer, London (1994)

    Book  Google Scholar 

  14. Buckdahn, R., Li, J.: Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations. SIAM J. Control Optim. 47(1), 444–475 (2008)

    Article  MathSciNet  Google Scholar 

  15. Chachuat, B., OMEGA Research Group: Mc++: a toolkit for construction, manipulation and bounding of factorable functions, 2006–2017. https://omega-icl.github.io/mcpp/

  16. Chachuat, B., OMEGA Research Group: CRONOS: complete search optimization for nonlinear systems, 2012–2017. https://omega-icl.github.io/cronos/

  17. Chachuat, B., Houska, B., Paulen, R., Peri’c, N., Rajyaguru, J., Villanueva, M.E.: Set-theoretic approaches in analysis, estimation and control of nonlinear systems. IFAC-PapersOnLine 48(8), 981–995 (2015)

    Article  Google Scholar 

  18. Chen, M., Herbert, S.L., Vashishtha, M.S., Bansal, S., Tomlin, C.J.: Decomposition of reachable sets and tubes for a class of nonlinear systems (2016). Preprint. arXiv:1611.00122

    Google Scholar 

  19. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 7(1), 147–158 (2004)

    Article  MathSciNet  Google Scholar 

  20. Diehl, M., Bjornberg, J.: Robust dynamic programming for min-max model predictive control of constrained uncertain systems. IEEE Trans. Autom. Control 49(12), 2253–2257 (2004)

    Article  MathSciNet  Google Scholar 

  21. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014). http://www.chebfun.org/docs/guide/

    Google Scholar 

  22. Dzetkulič, T.: Rigorous integration of non-linear ordinary differential equations in Chebyshev basis. Numer. Algorithms 69(1), 183–205 (2015)

    Article  MathSciNet  Google Scholar 

  23. Engell, S.: Online optimizing control: the link between plant economics and process control. In: 10th International Symposium on Process Systems Engineering: Part A. Computer Aided Chemical Engineering, vol. 27, pp. 79–86. Elsevier, Amsterdam (2009)

    Google Scholar 

  24. Filippov, A.F.: On certain questions in the theory of optimal control. J. SIAM Control Ser. A 1(1), 76–84 (1962)

    MathSciNet  MATH  Google Scholar 

  25. Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

    Article  MathSciNet  Google Scholar 

  26. Fukuda, K.: From the zonotope construction to the Minkowski addition of convex polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004)

    Article  MathSciNet  Google Scholar 

  27. Gerdts, M., Henrion, R., Hömberg, D., Landry, C.: Path planning and collision avoidance for robots. Numer. Algebra Control Optim. 2(3), 437–463 (2012)

    Article  MathSciNet  Google Scholar 

  28. Goulart, P.J., Kerrigan, E.C., Maciejowski, J.M.: Optimization over state feedback policies for robust control with constraints. Automatica 42(4), 523–533 (2006)

    Article  MathSciNet  Google Scholar 

  29. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, March 2014

  30. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  31. Grüne, L.: An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation. Numer. Math. 75(3), 319–337 (1997)

    Article  MathSciNet  Google Scholar 

  32. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0. In: Proceedings of the European Control Conference, Zürich, Switzerland, 17–19 July 2013, pp. 502–510. http://control.ee.ethz.ch/~mpt

  33. Houska, B., Chachuat, B.: Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control. J. Optim. Theory Appl. 162(1), 208–248 (2014)

    Article  MathSciNet  Google Scholar 

  34. Houska, B., Ferreau, H.J., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10), 2279–2285 (2011)

    Article  MathSciNet  Google Scholar 

  35. Houska, B., Logist, F., Van Impe, J., Diehl, M.: Robust optimization of nonlinear dynamic systems with application to a jacketed tubular reactor. J. Proc. Control 22(6), 1152–1160 (2012)

    Article  Google Scholar 

  36. Houska, B., Villanueva, M.E., Chachuat, B.: Stable set-valued integration of nonlinear dynamic systems using affine set-parameterizations. SIAM J. Numer. Anal. 53(5), 2307–2328 (2015)

    Article  MathSciNet  Google Scholar 

  37. Houska, B., Li, J.C., Chachuat, B.: Towards rigorous robust optimal control via generalized high-order moment expansion. Optimal Control Appl. Methods (2017). https://doi.org/10.1002/oca.2309

    Google Scholar 

  38. Keil, C.: PROFIL: Programmer’s runtime optimized fast interval library, 2009–2017. http://www.ti3.tuhh.de/keil/profil/index_e.html

  39. Kothare, M.V., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10), 1361–1379 (1996)

    Article  MathSciNet  Google Scholar 

  40. Kurzhanski, A.B., Filippova, T.F.: On the theory of trajectory tubes—a mathematical formalism for uncertain dynamics, viability and control. In: Advances in Nonlinear Dynamics and Control: A Report from Russia, volume 17 of Progress in Systems Control Theory, pp. 122–188. Birkhäuser, Boston (1993)

    Google Scholar 

  41. Kurzhanski, A.B., Vályi, I.: Ellipsoidal calculus for estimation and control. Systems & Control: Foundations & Applications. Birkhäuser, Boston (1997)

    Google Scholar 

  42. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (et). In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 1498–1503 (2006)

    Google Scholar 

  43. Langson, W., Chryssochoos, I., Raković, S.V., Mayne, D.Q.: Robust model predictive control using tubes. Automatica 40(1), 125–133 (2004)

    Article  MathSciNet  Google Scholar 

  44. Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Krämer, W.: Filib++, a fast interval library supporting containment computations. ACM Trans. Math. Softw. 32(2), 299–324 (2006). http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

    Article  MathSciNet  Google Scholar 

  45. Liberzon, D.: Calculus of variations and optimal control theory: a concise introduction. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  46. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)

    Article  MathSciNet  Google Scholar 

  47. Löfberg, J.: Minimax approaches to robust model predictive control. PhD thesis, Linköping University (2003)

    Google Scholar 

  48. Löfberg, J.: Approximations of closed-loop MPC. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, pp. 1438–1442 (2003)

    Google Scholar 

  49. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in matlab. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289. IEEE, Piscataway (2004)

    Google Scholar 

  50. Lucia, S., Finkler, T., Engell, S.: Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty. J. Process Control 23(9), 1306–1319 (2013)

    Article  Google Scholar 

  51. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Makino, K., Berz, M.: Cosy infinity version 9. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators Spectrometers Detectors Assoc. Equip. 558(1), 346–350 (2006)

    Article  Google Scholar 

  53. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57(1), 3–50 (2013)

    Article  MathSciNet  Google Scholar 

  54. Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations. J. Glob. Optim. (2014). https://doi.org/10.1007/s10898-014-0166-2

  55. Mitchell, I.M.: The flexible, extensible and efficient toolbox of level set methods. J. Sci. Comput. 35, 300–329 (2008)

    Article  MathSciNet  Google Scholar 

  56. Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems. In: Hybrid Systems Computation and Control. Lecture Notes in Computer Science, vol. 3414, pp. 480–494 (2005)

    MATH  Google Scholar 

  57. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  58. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  59. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  60. Nedialkov, N.S., Jackson, K.R.: An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. In: Developments in Reliable Computing, pp. 289–310. Springer, Dordrecht (1999)

    Google Scholar 

  61. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    Google Scholar 

  62. Rajyaguru, J., Villanueva, M.E., Houska, B., Chachuat, B.: Chebyshev model arithmetic for factorable functions. J. Glob. Optim. 68(2), 413–438 (2017)

    Article  MathSciNet  Google Scholar 

  63. Raković, S.V.: Set theoretic methods in model predictive control. In: Nonlinear Model Predictive Control: Towards New Challenging Applications. Lecture Notes in Control and Information Sciences, vol. 384, pp. 41–54. Springer, Heidelberg (2009)

    Google Scholar 

  64. Raković, S.V.: Invention of prediction structures and categorization of robust MPC syntheses. IFAC Proc. 45(17), 245–273 (2012)

    Article  Google Scholar 

  65. Rakovic, S.V., Kouvaritakis, B., Cannon, M., Panos, C., Findeisen, R.: Parameterized tube model predictive control. IEEE Trans. Autom. Control 57(11), 2746–2761 (2012)

    Article  MathSciNet  Google Scholar 

  66. Raković, S.V., Kouvaritakis, B., Findeisen, R., Cannon, M.: Homothetic tube model predictive control. Automatica 48(8), 1631–1638 (2012)

    Article  MathSciNet  Google Scholar 

  67. Raković, S.V., Levine, W.S., Açıkmeşe, B.: Elastic tube model predictive control. In: American Control Conference (ACC), pp. 3594–3599. IEEE, Piscataway (2016)

    Google Scholar 

  68. Rauh, A., Hofer, E.P., Auer, E.: VALENCIA-IVP: a comparison with other initial value problem solvers. In: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), pp. 36–36 (2006)

    Google Scholar 

  69. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design, 5th edn. Nob Hill Publishing, Madison (2015)

    Google Scholar 

  70. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tuhh.de/rump/

    Chapter  Google Scholar 

  71. Sahinidis, N.V.: BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual, 2005–2017. http://www.minlp.com/downloads/docs/baron{%}20manual.pdf

    Google Scholar 

  72. Scokaert, P.O.M., Mayne, D.Q.: Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. control 43(8), 1136–1142 (1998)

    Article  MathSciNet  Google Scholar 

  73. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics, vol. 41, American Mathematical Society, Providence (2002)

    Google Scholar 

  74. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York (2013)

    Google Scholar 

  75. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  Google Scholar 

  76. Trefethen, L.N., Battles, Z.: An extension of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)

    Article  MathSciNet  Google Scholar 

  77. Van Parys, B.P.G., Goulart, P.J., Morari, M.: Infinite horizon performance bounds for uncertain constrained systems. IEEE Trans. Autom. Control 58(11), 2803–2817 (2013)

    Article  MathSciNet  Google Scholar 

  78. Villanueva, M.E., Houska, B., Chachuat, B.: Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs. J. Glob. Optim. 62(3), 575–613 (2015)

    Article  MathSciNet  Google Scholar 

  79. Villanueva, M.E., Rajyaguru, J., Houska, B., Chachuat, B.: Ellipsoidal arithmetic for multivariate systems. Comput. Aided Chem. Eng. 37, 767–772 (2015)

    Article  Google Scholar 

  80. Villanueva, M.E., Li, J.C., Feng, X., Chachuat, B., Houska, B.: Computing ellipsoidal robust forward invariant tubes for nonlinear MPC. In: Proceedings of the 20th IFAC World Congress, Toulouse, pp. 7436–7441 (2017)

    Google Scholar 

  81. Villanueva, M.E., Quirynen, R., Diehl, M., Chachuat, B., Houska, B.: Robust MPC via minmax differential inequalities. Automatica 77, 311–321 (2017)

    Article  MathSciNet  Google Scholar 

  82. Wan, Z., Kothare, M.V.: An efficient off-line formulation of robust model predictive control using linear matrix inequalities. Automatica 39(5), 837–846 (2003)

    Article  MathSciNet  Google Scholar 

  83. Wang, Y., O’Donoghue, B., Boyd, S.: Approximate dynamic programming via iterated bellman inequalities. Int. J. Robust Nonlinear Control 25(10), 1472–1496 (2015)

    Article  MathSciNet  Google Scholar 

  84. Zeilinger, M.N., Raimondo, D.M., Domahidi, A., Morari, M., Jones, C.N.: On real-time robust model predictive control. Automatica 50(3), 683–694 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Houska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houska, B., Villanueva, M.E. (2019). Robust Optimization for MPC. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_18

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics