Skip to main content

On the Role of the Channel Nucleoporins in Nuclear Transport

  • Chapter
  • First Online:
Nuclear-Cytoplasmic Transport

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 33))

  • 644 Accesses

Abstract

The nuclear pore complex (NPC) facilitates transport of a large diversity of cargoes, including proteins, mRNA protein complexes, and ribosomal subunits. Three of its proteins line the central transport channel: Nup58, Nup54, and Nup62. These channel nups are essential to achieve significant transport rates through the NPC. Recently, several x-ray structures of the channel nups have been determined. Furthermore, a cryo-electron tomography structure of the NPC was determined, and the x-ray structures were docked into the electron microscopy map, yielding a composite structure of the NPC. These advances provide insight into the organization of the channel nups in the NPC transport channel, the FG-repeat permeability barrier, and the mechanism of active transport. They provide a foundation to investigate in the future whether the NPC scaffold is static, and merely serves to provide anchorage sites for FG-repeat domains, or whether multiple structural conformations of the NPC scaffold are formed. It will also be important to investigate how the presence of FG-repeats, which make up a significant portion of the NPC mass, and their interactions with transport receptors modulate the NPC scaffold and how this affects nuclear transport rates. It also needs to be established how distinct physiological states, such as cell proliferation, developmental stages, cell quiescence, cancer, or viral infections, modulate the structure and composition of the NPC transport channel to adjust transport rates to cellular demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ader C, Frey S, Maas W, Schmidt HB, Görlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107(14):6281–6285

    Article  PubMed  PubMed Central  Google Scholar 

  • Akey CW, Goldfarb DS (1989) Protein import through the nuclear pore complex is a multistep process. J Cell Biol 109(3):971–982

    Article  CAS  PubMed  Google Scholar 

  • Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos Damien P, Arumugam M, Bork P, Hurt E (2011) Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146(2):277–289

    Article  PubMed  CAS  Google Scholar 

  • Ao Z, Jayappa KD, Wang B, Zheng Y, Wang X, Peng J, Yao X (2012) Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration. J Biol Chem 287(13):10544–10555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asakawa H, Yang H-J, Yamamoto TG, Ohtsuki C, Chikashige Y, Sakata-Sogawa K, Tokunaga M, Iwamoto M, Hiraoka Y, Haraguchi T (2014) Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe. Nucleus 5(2):149–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Au S, Panté N (2012) Nuclear transport of baculovirus: revealing the nuclear pore complex passage. J Struct Biol 177(1):90–98

    Article  PubMed  CAS  Google Scholar 

  • Bailer SM (2000) Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J Biol Chem 275:23540–23548

    Article  PubMed  CAS  Google Scholar 

  • Bailer SM, Balduf C, Hurt E (2001) The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol Cell Biol 21:7944–7955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, Walsh CA, Magal N, Taub E, Drasinover V, Shalev H, Attia R, Rechavi G, Simon AJ, Shohat M (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60(2):214–222

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Littlewood T, Stewart M (2000) Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102(1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Bayliss R, Leung SW, Baker RP, Quimby B, Corbett AH, Stewart M (2002) Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J 21(12):2843–2853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunger AT, Weninger K, Bowen M, Chu S (2009) Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 78(1):903–928. https://doi.org/10.1146/annurev.biochem.77.070306.103621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull M-T, Bock T, Hagen W, Andres-Pons A, Glavy JS, Beck M (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6):1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Buss F, Stewart M (1995) Macromolecular interactions in the nucleoporin p62 complex of rat nuclear pores: binding of nucleoporin p54 to the rod domain of p62. J Cell Biol 128(3):251–261

    Article  PubMed  CAS  Google Scholar 

  • Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmo-Fonseca M, Kern H, Hurt EC (1991) Human nucleoporin p62 and the essential yeast nuclear pore protein NSP1 show sequence homology and a similar domain organization. Eur J Cell Biol 55(1):17–30

    PubMed  CAS  Google Scholar 

  • Castelló A, Izquierdo JM, Welnowska E, Carrasco L (2009) RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J Cell Sci 122(Pt20):3799–3809

    Article  PubMed  CAS  Google Scholar 

  • Chang C-W, Lee C-P, Su M-T, Tsai C-H, Chen M-R (2015) BGLF4 kinase modulates the structure and transport preference of the nuclear pore complex to facilitate nuclear import of Epstein-Barr virus lytic proteins. J Virol 89(3):1703–1718

    Article  PubMed  CAS  Google Scholar 

  • Chug H, Trakhanov S, Hülsmann BB, Pleiner T, Görlich D (2015) Crystal structure of the metazoan Nup62•Nup58•Nup54 nucleoporin complex. Science 350(6256):106

    Article  PubMed  CAS  Google Scholar 

  • Ciomperlik JJ, Basta HA, Palmenberg AC (2015) Three cardiovirus leader proteins equivalently inhibit four different nucleocytoplasmic trafficking pathways. Virology 484:194–202

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Au S, Pante N (2011) How viruses access the nucleus. Biochim Biophys Acta 1813(9):1634–1645

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr 6:689–697

    Article  CAS  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis LI, Blobel G (1986) Identification and characterization of a nuclear pore complex protein. Cell 45(5):699–709

    Article  PubMed  CAS  Google Scholar 

  • Davis LI, Blobel G (1987) Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci USA 84(21):7552–7556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dewangan PS, Sonawane PJ, Chouksey AR, Chauhan R (2017) The Nup62 coiled-coil motif provides plasticity for triple-helix bundle formation. Biochemistry 56(22):2803–2811

    Article  PubMed  CAS  Google Scholar 

  • Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6:7532

    Article  PubMed  CAS  Google Scholar 

  • Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138(6):1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feldherr CM, Akin D (1990) The permeability of the nuclear envelope in dividing and nondividing cell cultures. J Cell Biol 111(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1991) Signal-mediated nuclear transport in proliferating and growth-arrested BALB/c 3T3 cells. J Cell Biol 115(4):933–939

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1993) Regulation of nuclear transport in proliferating and quiescent cells. Exp Cell Res 205(1):179–186

    Article  PubMed  CAS  Google Scholar 

  • Finlay D, Newmeyer D, Price T, Forbes D (1987) Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104(2):189–200

    Article  PubMed  CAS  Google Scholar 

  • Finlay D, Meier E, Bradley P, Horecka J, Forbes D (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114(1):169–183

    Article  PubMed  CAS  Google Scholar 

  • Finlay DR, Forbes DJ (1990) Reconstitution of biochemically altered nuclear pores: transport can be eliminated and restored. Cell 60(1):17–29

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Teimer R, Amlacher S, Kunze R, Hurt E (2015) Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat Struct Mol Biol 22(10):774–781

    Article  CAS  PubMed  Google Scholar 

  • Forbes DJ, Kirschner MW, Newport JW (1983) Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell 34(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Frank S, Lustig A, Schulthess T, Engel J, Kammerer RA (2000) A distinct seven-residue trigger sequence is indispensable for proper coiled-coil formation of the human macrophage scavenger receptor oligomerization domain. J Biol Chem 275(16):11672–11677

    Article  PubMed  CAS  Google Scholar 

  • Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314:815–817

    Article  PubMed  CAS  Google Scholar 

  • Fribourg S, Braun IC, Izaurralde E, Conti E (2001) Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell 8(3):645–656

    Article  PubMed  CAS  Google Scholar 

  • Gamini R, Han W, Stone JE, Schulten K (2014) Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLoS Comput Biol 10(3):e1003488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez L, Woolfson DN, Alber T (1996) Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Mol Biol 3(12):1011–1018

    Article  CAS  Google Scholar 

  • Grandi P, Schlaich N, Tekotte H, Hurt EC (1995) Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J 14(1):76–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffis ER, Xu S, Powers MA (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14(2):600–610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan T, Müller S, Klier G, Panté N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6(11):1591–1603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haltiwanger RS, Blomberg MA, Hart GW (1992) Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem 267(13):9005–9013

    PubMed  CAS  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Ann Rev Biochem 80:825–858

    Article  PubMed  CAS  Google Scholar 

  • Hoelz A, Glavy JS, Beck M (2016) Towards the atomic structure of the nuclear pore complex: when top down meets bottom up. Nat Struct Mol Biol 23(7):624–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O- linked N-acetylglucosamine. J Cell Biol 104(5):1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Hough LE, Dutta K, Sparks S, Temel DB, Kamal A, Tetenbaum-Novatt J, Rout MP, Cowburn D (2015) The molecular mechanism of nuclear transport revealed by atomic-scale measurements. eLife 4:e10027

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu T, Gerace L (1998) cDNA cloning and analysis of the expression of nucleoporin p45. Gene 221(2):245–253

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Guan T, Gerace L (1996) Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins. J Cell Biol 134(3):589–601

    Article  PubMed  CAS  Google Scholar 

  • Hülsmann Bastian B, Labokha Aksana A, Görlich D (2012) The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150(4):738–751

    Article  PubMed  CAS  Google Scholar 

  • Jeudy S, Schwartz TU (2007) Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture. J Biol Chem 282(48):34904–34912

    Article  PubMed  CAS  Google Scholar 

  • Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371

    Article  CAS  PubMed  Google Scholar 

  • Kapinos Larisa E, Schoch Rafael L, Wagner Raphael S, Schleicher Kai D, Lim Roderick Y (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106(8):1751–1762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelich JM, Ma J, Dong B, Wang Q, Chin M, Magura CM, Xiao W, Yang W (2015) Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol Ther Methods Clin Dev 2:15047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:475

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • King MC, Lusk C, Blobel G (2006) Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442(7106):1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita Y, Kalir T, Dottino P, Kohtz DS (2012) Nuclear distributions of Nup62 and Nup214 suggest architectural diversity and spatial patterning among nuclear pore complexes. PLoS One 7(4):e36137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinoshita Y, Hunter RG, Gray JD, Mesias R, McEwen BS, Benson DL, Kohtz DS (2014) Role for NUP62 depletion and PYK2 redistribution in dendritic retraction resulting from chronic stress. Proc Natl Acad Sci USA 111(45):16130–16135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kiseleva E, Goldberg MW, Allen TD, Akey CW (1998) Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J Cell Sci 111(2):223

    PubMed  CAS  Google Scholar 

  • Kita K, Omata S, Horigome T (1993) Purification and characterization of a nuclear pore glycoprotein complex containing p 62. J Biochem 113(3):377–382

    Article  PubMed  CAS  Google Scholar 

  • Koder RL, Valentine KG, Cerda J, Noy D, Smith KM, Wand AJ, Dutton PL (2006) Nativelike structure in designed four α-helix bundles driven by buried polar interactions. J Am Chem Soc 128(45):14450–14451

    Article  PubMed  CAS  Google Scholar 

  • Koh J, Blobel G (2015) Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161(6):1361–1373

    Article  PubMed  CAS  Google Scholar 

  • Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJH, Briggs JAG, Glavy JS, Hurt E, Beck M (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352(6283):363–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagerlöf O, Slocomb JE, Hong I, Aponte Y, Blackshaw S, Hart GW, Huganir RL (2016) The nutrient sensor OGT in PVN neurons regulates feeding. Science 351(6279):1293–1296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, Aebersold R, Antonin W, Kutay U (2011) Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144:539–550

    Article  CAS  PubMed  Google Scholar 

  • Liashkovich I, Meyring A, Oberleithner H, Shahin V (2012) Structural organization of the nuclear pore permeability barrier. J Control Release 160(3):601–608

    Article  PubMed  CAS  Google Scholar 

  • Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, Fan Y, Thierbach K, Huber FM, Collins LN, Davenport AM, Jeon YE, Hoelz A (2016) Architecture of the symmetric core of the nuclear pore. Science 352(6283). https://doi.org/10.1126/science.aaf1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220(4598):719

    Article  PubMed  CAS  Google Scholar 

  • Lubas WA, Smith M, Starr CM, Hanover JA (1995) Analysis of nuclear pore protein p62 glycosylation. Biochemistry 34(5):1686–1694

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Lusk CP, Blobel G, King MC (2007) Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 8(5):414–420

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Goryaynov A, Sarma A, Yang W (2012) Self-regulated viscous channel in the nuclear pore complex. Proc Natl Acad Sci USA 109(19):7326–7331

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, Walter NG, Yang W (2013) High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun 4:2414–2414

    Article  PubMed  CAS  Google Scholar 

  • Macaulay C, Meier E, Forbes DJ (1995) Differential mitotic phosphorylation of proteins of the nuclear pore complex. J Biol Chem 270(1):254–262. https://doi.org/10.1074/jbc.270.1.254

    Article  CAS  PubMed  Google Scholar 

  • Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Kuhn Cuellar L, Förster F, Hyman AA, Plitzko JM, Baumeister W (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276):969

    Article  PubMed  CAS  Google Scholar 

  • Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, Graham SV, Schirmer EC (2012) Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through Nup62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem 287(15):12277–12292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meinema AC, Laba JK, Hapsari RA, Otten R, Mulder FAA, Kralt A, van den Bogaart G, Lusk CP, Poolman B, Veenhoff LM (2011) Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science 333(6038):90–93

    Article  CAS  PubMed  Google Scholar 

  • Melcák I, Hoelz A, Blobel G (2007) Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science 315(5819):1729–1732

    Article  CAS  PubMed  Google Scholar 

  • Mi L, Goryaynov A, Lindquist A, Rexach M, Yang W (2015) Quantifying nucleoporin stoichiometry inside single nuclear pore complexes in vivo. Sci Rep 5:9372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao L, Schulten K (2009) Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17(3):449–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao L, Schulten K (2010) Probing a structural model of the nuclear pore complex channel through Molecular Dynamics. Biophys J 98(8):1658–1667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizuguchi-Hata C, Ogawa Y, Oka M, Yoneda Y (2013) Quantitative regulation of nuclear pore complex proteins by O-GlcNAcylation. Biochim Biophys Acta 1833(12):2682–2689

    Article  PubMed  CAS  Google Scholar 

  • Monette A, Panté N, Mouland AJ (2011) HIV-1 remodels the nuclear pore complex. J Cell Biol 193(4):619–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosalaganti S, Kosinski J, Albert S, Schaffer M, Plitzko JM, Baumeister W, Engel BD, Beck M (2017) In situ architecture of the algal nuclear pore complex. bioRxiv. https://doi.org/10.1101/232017

  • Ohba T, Schirmer EC, Nishimoto T, Gerace L (2004) Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J Cell Biol 167(6):1051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    Article  PubMed  CAS  Google Scholar 

  • Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Bui KH, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostlund C, Ellenberg J, Hallberg E, Lippincott-Schwartz J, Worman HJ (1999) Intracellular trafficking of emerin, the Emery-Dreifuss muscular dystrophy protein. J Cell Sci 112(11):1709

    PubMed  CAS  Google Scholar 

  • Panté N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of ∼39 nm. Mol Biol Cell 13(2):425–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Park N, Katikaneni P, Skern T, Gustin KE (2008) Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol 82(4):1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Park N, Skern T, Gustin KE (2010) Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease. J Biol Chem 285(37):28796–28805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter FW, Brown B, Palmenberg AC (2010) Nucleoporin phosphorylation triggered by the encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases. J Virol 84(24):12538–12548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radu A, Moore MS, Blobel G (1995) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81(2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Rajoo S, Vallotton P, Onischenko E, Weis K (2018) Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. Proc Nat Acad Sci USA. https://doi.org/10.1073/pnas.1719398115

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4):635–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sachdev R, Sieverding C, Flötenmeyer M, Antonin W (2012) The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes. Mol Biol Cell 23(4):740–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrader N, Stelter P, Flemming D, Kunze R, Hurt E, Vetter IR (2008) Structural basis of the Nic96 subcomplex organization in the nuclear pore channel. Mol Cell 29(1):46–55

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Solmaz SR, Blobel G, Melcak I (2015) Ordered regions of channel nucleoporins Nup62, Nup54, and Nup58 form dynamic complexes in solution. J Biol Chem 290(30):18370–18378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shindo Y, Iwamoto K, Mouri K, Hibino K, Tomita M, Kosako H, Sako Y, Takahashi K (2016) Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nat Commun 7:10485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104(5):1143–1156

    Article  PubMed  CAS  Google Scholar 

  • Solmaz SR, Chauhan R, Blobel G, Melcak I (2011) Molecular architecture of the transport channel of the nuclear pore complex. Cell 147(3):590–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solmaz SR, Blobel G, Melcak I (2013) Ring cycle for dilating and constricting the nuclear pore. Proc Natl Acad Sci USA 110(15):5858–5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz MO, Stock A, Schulthess T, Landwehr R, Lustig A, Faix J, Gerisch G, Aebi U, Kammerer RA (1998) A distinct 14 residue site triggers coiled-coil formation in cortexillin I. EMBO J 17(7):1883–1891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stuwe T, Bley CJ, Thierbach K, Petrovic S, Schilbach S, Mayo DJ, Perriches T, Rundlet EJ, Jeon YE, Collins LN, Huber FM, Lin DH, Paduch M, Koide A, Lu V, Fischer J, Hurt E, Koide S, Kossiakoff AA, Hoelz A (2015) Architecture of the nuclear pore inner ring complex. Science 350(6256):56–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulrich A, Partridge JR, Schwartz TU (2014) The stoichiometry of the nucleoporin 62 subcomplex of the nuclear pore in solution. Mol Biol Cell 25:1484–1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Ungricht R, Klann M, Horvath P, Kutay U (2015) Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J Cell Biol 209(5):687–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio AL, Vollmer B, Mackmull M-T, Banterle N, Parca L, Kastritis P, Buczak K, Mosalaganti S, Hagen W, Andres-Pons A, Lemke EA, Bork P, Antonin W, Glavy JS, Bui KH, Beck M (2015) In situ structural analysis of the human nuclear pore complex. Nature 526(7571):140–143

    Article  CAS  Google Scholar 

  • Wang J, Sykes BD, Ryan RO (2002) Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc Natl Acad of Sci USA 99(3):1188–1193

    Article  CAS  Google Scholar 

  • Wimmer C, Doye V, Grandi P, Nehrbass U, Hurt EC (1992) A new subclass of nucleoporins that functionally interact with nuclear pore protein NSP1. EMBO J 11(13):5051–5061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, Lin F, Worman HJ (2002) Intracellular trafficking of MAN1, an integral protein of the nuclear envelope inner membrane. J Cell Sci 115(7):1361

    CAS  PubMed  Google Scholar 

  • Yang W, Musser SM (2006) Nuclear import time and transport efficiency depend on importin β concentration. J Cell Biol 174(7):951–961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Liu T-W, Madden Z, Yuzwa SA, Murray K, Cecioni S, Zachara N, Vocadlo DJ (2016) Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J Mol Cell Biol 8(1):2–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Günter Blobel, as well as his trainees Ivo Melcak, Junseock Koh, and Bartlomiej Blus (HHMI at The Rockefeller University) for critical reading of the manuscript. Sadly, my dear mentor and friend Günter Blobel passed away on February 18, 2018. Words cannot express how much I miss his enthusiasm, vision, brilliance, generosity and impeccable scholarship. I would like to dedicate my book chapter to his memory and to the great scientific discussions we had. Furthermore, I would like to thank Rachael Behler, Kyle Loftus and Ayesha Siddiqua (Binghamton University), for helpful comments. We thank the Research Foundation of the State University of New York and the Department of Chemistry, State University of New York at Binghamton for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sozanne R. Solmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solmaz, S.R. (2018). On the Role of the Channel Nucleoporins in Nuclear Transport. In: Yang, W. (eds) Nuclear-Cytoplasmic Transport. Nucleic Acids and Molecular Biology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-77309-4_5

Download citation

Publish with us

Policies and ethics