Skip to main content

The WebLab-Deusto Remote Laboratory Management System Architecture: Achieving Scalability, Interoperability, and Federation of Remote Experimentation

  • Chapter
  • First Online:
Cyber-Physical Laboratories in Engineering and Science Education

Abstract

WebLab-Deusto is an open-source Remote Laboratory Management System (RLMS). On top of it, one can develop and manage remote laboratories and share them with other institutions. This chapter describes the architecture and features of the system, as well as a nontechnical view of other aspects such as how to share laboratories in the context of WebLab-Deusto, different institutions using WebLab-Deusto for their remote laboratories, research projects where it has been used, and sustainability plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://weblab.deusto.es

  2. 2.

    https://github.com/weblabdeusto/weblabdeusto

  3. 3.

    https://weblabdeusto.readthedocs.io

  4. 4.

    https://github.com/JohanZackrisson/visir_html5

  5. 5.

    http://ilab.mit.edu

  6. 6.

    http://www.remlabnet.eu

  7. 7.

    http://labshare-sahara.sf.net

  8. 8.

    https://weblab.deusto.es/weblab/

  9. 9.

    Section contributed by Martin Kaluz (STUBA – Slovak University of Technology in Bratislava).

  10. 10.

    http://weblab.chtf.stuba.sk/

  11. 11.

    Section contributed by Michael Canu and Mauricio Duque (University of los Andes, Colombia) and Philippe Chevrel and Ismael Meja (Ecole des Mines des Nantes, France).

  12. 12.

    Section contributed by Felix Garcia-Loro (UNED DIEEC, Madrid, Spain).

  13. 13.

    http://weblab.ieec.uned.es

  14. 14.

    http://weblabduino.pucsp.br/weblab/

  15. 15.

    http://graasp.eu

  16. 16.

    http://www.go-lab-project.eu

  17. 17.

    http://www.europamedia.org/projects/olarex

  18. 18.

    http://www.ico-op.eu/

  19. 19.

    http://projects.tempus.ac.rs/en/project/855

  20. 20.

    http://www.e-pragmatic.eu/

  21. 21.

    https://www.nsf.gov/awardsearch/showAward?AWD_ID=1132813

  22. 22.

    http://www.go-lab-project.eu/

  23. 23.

    http://www.golabz.eu

  24. 24.

    https://labsland.com

References

  • Alves, G. R., Ferreira, J. M., Muller, D., Erbe, H. H., Hine, N., Alves, J., Pereira, C. E., Chiang, L., Herrera, O., & Sucar, E. (2005). Remote experimentation network-yielding an inter-university peer-to-peer e-service. In 2005 IEEE Conference on Emerging Technologies and Factory Automation (Vol. 2, pp. 8–pp). IEEE.

    Google Scholar 

  • Alves, G. R., Fidalgo, A., Marques, A., Viegas, C., Felgueiras, M. C., Costa, R., Lima, N., Castro, M., Diaz-Orueta, G., San Cristobal Ruiz, E., Garcia-Loro, F., Garcia-Zubia, J., Hernandez-Jayo, U., Kulesza, W., Gustavsson, I., Pester, A., Zutin, D., Schlichting, L., Ferreira, G., de Bona, D., da Silva, J. B., Alves, J. B., Biléssimo, S., Pavani, A., Lima, D., Temporao, G., Marchisio, S., Concari, S., Lerro, F., Fernandez, R., Paz, H., Soria, F., Almeida, N., de Olieveira, V., Pozzo, M. I., & Dobboletta, E. (2016). Spreading remote lab usage. In CISPEE 2016. IEEE.

    Google Scholar 

  • Angulo, I., García-Zubia, J., Orduña, P., & Dziabenko, O. (2013). Addressing low cost remote laboratories through federation protocols: Fish tank remote laboratory. In Global Engineering Education Conference (EDUCON), 2013 IEEE (pp. 757–762). IEEE.

    Google Scholar 

  • Barrios, A., Duque, M., Canu, M., Luis Villa, J., Chevrel, P., Grisales, V. H., Prieto, F., & Panche, S. (2013a). Academic evaluation protocol for monitoring modalities of use at an automatic control laboratory: Local vs. remote. International Journal of Engineering Education, 29(6), 1551–1563.

    Google Scholar 

  • Barrios, A., Panche, S., Duque, M., Grisales, V. H., Prieto, F., Villa, J. L., Chevrel, P., & Canu, M. (2013b). A multi-user remote academic laboratory system. Computers & Education, 62, 111–122.

    Article  Google Scholar 

  • Canu, M., & Duque, M. (2015). Laboratorios remotos: >qué interés pedagógico? Una formación de calidad en ingeniería, para el futuro.

    Google Scholar 

  • Caro, C., & Quijano, N. (2011). Low cost experiment for control systems. In Robotics Symposium, 2011 IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications (LARC) (pp. 1–6). IEEE.

    Google Scholar 

  • Chase, R. (2015). Peers Inc: How people and platforms are inventing the collaborative economy and reinventing capitalism. New York: PublicAffairs.

    Google Scholar 

  • de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308.

    Article  Google Scholar 

  • de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in stem education: The go-lab federation of online labs. Smart Learning Environments, 1(1), 1.

    Google Scholar 

  • García, F., Díaz, G., Tawfik, M., Martín, S., Sancristobal, E., & Castro, M. (2014). A practice-based mooc for learning electronics. In 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 969–974). IEEE.

    Google Scholar 

  • Garcia-Zubia, J., López-de Ipiña, D., & Orduña, P. (2008). Mobile devices and remote labs in engineering education. In 2008 Eighth IEEE International Conference on Advanced Learning Technologies (pp. 620–622). IEEE.

    Google Scholar 

  • Garcia-Zubia, J., Orduña, P., Lopez-de Ipina, D., & Alves, G. (2009). Addressing software impact in the design of remote laboratories. IEEE Transactions on Industrial Electronics, 56(12), 4757–4767.

    Article  Google Scholar 

  • Garcia-Zubia, J., Angulo, I., Martnez-Pieper, G., López-De-Ipiña, D., Hernández, U., Orduña, P., Dziabenko, O., Rodrguez-Gil, L., Riesen, SANv., Anjewierden, A., Kamp, E. T., & de Jong, T. (2015). Archimedes remote lab for secondary schools. In 2015 3rd Experiment International Conference, exp.at’15 (pp. 60–64), Azores. https://doi.org/10.1109/EXPAT.2015.7463215, 00000.

  • Gillet, D., de Jong, T., Sotirou, S., & Salzmann, C. (2013). Personalised learning spaces and federated online labs for stem education at school. In Global Engineering Education Conference (EDUCON), 2013 IEEE (pp. 769–773). IEEE.

    Google Scholar 

  • Gustavsson, I., Zackrisson, J., Håkansson, L., Claesson, I., & Lagö, T. (2007). The visir project–an open source software initiative for distributed online laboratories. In Proceedings of the REV 2007 Conference, Porto.

    Google Scholar 

  • Harward, V. J., del Alamo JA, et al. (2008a). Building an ecology of online labs. In Proceeding of the International Conference on Interactive Collaborative Learning – ICL2008.

    Google Scholar 

  • Harward VJ, et al. (2008b). The ilab shared architecture: A web services infrastructure to build communities of internet accessible laboratories. Proceedings of the IEEE, 96(6), 931–950.

    Article  Google Scholar 

  • Kalúz, M., García-Zubía, J., Orduña, P., Fikar, M., & Čirka, Ľ. (2013). Sharing control laboratories by remote laboratory management system WebLab-Deusto. In S. Dormido (Ed.), Proceedings of 10th IFAC Symposium on Advances in Control Education, University of Sheffield, International Federation of Automatic Control, Sheffield, Advances in Control Education (Vol. 10, pp. 345–350). https://doi.org/10.3182/20130828-3-UK-2039.00048

    Article  Google Scholar 

  • Kalúz, M., García-Zubía, J., Fikar, M., & Čirka, Ľ. (2015). A flexible and configurable architecture for automatic control remote laboratories. IEEE Transactions on Learning Technologies, 8(3), 299–310. https://doi.org/10.1109/TLT.2015.2389251

    Article  Google Scholar 

  • Lowe, D., & Orou, N. (2012). Interdependence of booking and queuing in remote laboratory scheduling. In Remote Engineering Virtual Instrumentation 2012, REV 2012.

    Google Scholar 

  • Lowe, D., Machet, T., & Kostulski, T. (2012a). UTS remote labs, Labshare, and the Sahara architecture. Using Remote Labs in Education: Two Little Ducks in Remote Experimentation (p. 403).

    Google Scholar 

  • Lowe, D., de la Villefromoy, M., Jona, K., & Yeoh, L. (2012b). Remote laboratories: Uncovering the true costs. In 2012 9th International Conference on Remote Engineering and Virtual Instrumentation (REV) (pp. 1–6). IEEE.

    Google Scholar 

  • Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys (CSUR), 38(3), 7.

    Article  Google Scholar 

  • Macho, A., Sancristobal, E., Rodriguez-Artacho, M., & Castro, M., et al. (2016). Remote laboratories for electronics and new steps in learning process integration. In 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV) (pp. 112–117). IEEE.

    Google Scholar 

  • Milošević, M., Milošević, D., Dimopoulos, C., & Katzis, K. (2016). Security challenges in delivery of remote experiments. In XXII Skup TRENDOVI RAZVOJA.

    Google Scholar 

  • Orduña, P. (2013). Transitive and scalable federation model for remote laboratories. Ph.D. thesis, University of Deusto.

    Google Scholar 

  • Orduña, P., & García-Zubia, J. (2011). Scheduling schemes among internet laboratories ecosystems. In Proceeding of Eighth International Conference on Remote Engineering and Virtual Instrumentation (REV11) (pp. 1–6).

    Google Scholar 

  • Orduña, P., Lerro, F., Bailey, P., Marchisio, S., DeLong, K., Perreta, E., Dziabenko, O., Angulo, I., López-de Ipiña, D., & Garcia-Zubia, J. (2013). Exploring complex remote laboratory ecosystems through interoperable federation chains. In 2013 IEEE Global Engineering Education Conference (EDUCON) (pp 1200–1208). IEEE.

    Google Scholar 

  • Orduña, P., Almeida, A., Ros, S., López-de Ipiña, D., & Zubía, J. G. (2014). Leveraging non-explicit social communities for learning analytics in mobile remote laboratories. J UCS, 20(15), 2043–2053.

    Google Scholar 

  • Orduña, P., Zutin, D. G., Govaerts, S., Zorrozua, I. L., Bailey, P. H., Sancristobal, E., Salzmann, C., Rodriguez-Gil, L., DeLong, K., Gillet, D., et al. (2015). An extensible architecture for the integration of remote and virtual laboratories in public learning tools. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 10(4), 223–233.

    Article  Google Scholar 

  • Orduña, P., Rodriguez-Gil, L., Garcia-Zubia, J., Angulo, I., Hernandez, U., & Azcuenaga, E. (2016). Labsland: A sharing economy platform to promote educational remote laboratories maintainability, sustainability and adoption. In Frontiers in Education Conference FIE2016.

    Google Scholar 

  • Parker, G., Van Alstyne, M. W., & Choudary, S. P. (2016). Platform revolution: How networked markets are transforming the economy and how to make them work for you. 1st ed. New York: W. W. Norton & Company.

    Google Scholar 

  • Richter, T., Boehringer, D., & Jeschke, S. (2011). Lila: A European project on networked experiments. Automation, Communication and Cybernetics in Science and Engineering, 2009/2010, 307–317.

    Google Scholar 

  • Rodriguez-Gil, L., Garcia-Zubia, J., Orduña, P., & Lopez-de Ipiña, D. (2016). Towards new multiplatform hybrid online laboratory models. IEEE Transactions on Learning Technologies, 10(3), 318–330.

    Article  Google Scholar 

  • Ruiz, E. S., Martin, A. P., Orduna, P., Martin, S., Gil, R., Larrocha, E. R., Albert, M. J., Diaz, G., Meier, R., & Castro, M. (2014). Virtual and remote industrial laboratory: Integration in learning management systems. IEEE Industrial Electronics Magazine, 8(4), 45–58.

    Article  Google Scholar 

  • Sancristobal, E., Martin, S., Gil, R., Orduna, P., Tawfik, M., Pesquera, A., Diaz, G., Colmenar, A., Garcia-Zubia, J., & Castro, M. (2012). State of art, initiatives and new challenges for virtual and remote labs. In 2012 IEEE 12th International Conference on Advanced Learning Technologies (pp. 714–715). IEEE.

    Google Scholar 

  • Schauer, F., Krbecek, M., Beno, P., Gerza, M., Palka, L., Spilakov, P., & Tkac, L. (2016). Remlabnet III – federated remote laboratory management system for university and secondary schools. In 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV) (pp. 238–241). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Orduña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orduña, P. et al. (2018). The WebLab-Deusto Remote Laboratory Management System Architecture: Achieving Scalability, Interoperability, and Federation of Remote Experimentation. In: Auer, M., Azad, A., Edwards, A., de Jong, T. (eds) Cyber-Physical Laboratories in Engineering and Science Education. Springer, Cham. https://doi.org/10.1007/978-3-319-76935-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76935-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76934-9

  • Online ISBN: 978-3-319-76935-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics