Skip to main content

Anomalies and Kinetic Theory

  • Chapter
  • First Online:
Topological Matter

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 190))

  • 3277 Accesses

Abstract

In this chapter, we will make an overview of the quantum anomalies, as quantities that are no longer conserved when passing from the classical to the quantum realm. We will focus on the chiral anomaly. The discussion will be made in terms of the semiclassical kinetic theory, where the classical Boltzmann transport equation is supplemented by the equations of motion that explicitly contain the Berry connection. In this regard, we will make explicit the connection between the chiral anomaly and the non-trivial topological structure of Weyl semimetals. We will make the discussion beyond the different relaxation time approaches that are commonly used in the literature. This approach introduces some mathematical complexities but also reveals some less known features of transport in Weyl semimetals. Finally, we will discuss other quantum anomalies that have been of interest recently in Condensed Matter Physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is totally allowed since the Schrodinger equation can be obtained by a variational principle of a Lagrangean, as was shown by Dirac.

  2. 2.

    The expression for \(\mathscr {A}(\mathbf {k_c})\) as \(\mathscr {A}(\mathbf {k_c})=i\left\langle u_{\mathbf {k}}\right| \nabla _{\mathbf {k}}\left| u_{\mathbf {k}}\right\rangle \), can be obtained by imposing that the wavepacket (7.7) is centered around \(\mathbf {x}_{c}\): \(\left\langle \mathbf {x}_c,\mathbf {k}_c\right| \mathbf {x}-\mathbf {x}_c\left| \mathbf {x}_c,\mathbf {k}_c\right\rangle =0\).

  3. 3.

    All this section is inspired by [29].

References

  1. E. Noether, Invariant variation problems. Transp. Theor. Stat. Phys. 1, 186–207 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  2. S.L. Adler, Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969)

    Article  ADS  Google Scholar 

  3. J.S. Bell, R. Jackiw, A \(pcac\) puzzle: \(\pi _0\rightarrow \gamma \gamma \) in the \(\sigma \)-model. Il Nuovo Cimento A 1965–1970(60), 47–61 (1969)

    Article  ADS  Google Scholar 

  4. G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)

    Google Scholar 

  5. N. Manton, The schwinger model and its axial anomaly. Ann. Phys. 159, 220–251 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. X.G. Wen, Chiral luttinger liquid and the edge excitations in the fractional quantum hall states. Phys. Rev. B 41, 12838–12844 (1990)

    Article  ADS  Google Scholar 

  7. K. Landsteiner, Notes on anomaly induced transport. Acta Phys. Pol., B 47, 2617 (2016)

    Article  ADS  Google Scholar 

  8. E.V. Gorbar, V.A. Miransky, I.A., Shovkovy, P.O. Sukhachov, Anomalous transport properties of Dirac and Weyl semimetals (2017), arXiv:1712.08947

  9. N.P. Armitage, E.J. Mele, A. Vishwanath, Weyl and dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998)

    Google Scholar 

  11. H. Nielsen, M. Ninomiya, A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219–223 (1981)

    Article  ADS  Google Scholar 

  12. H. Nielsen, M. Ninomiya, The adler-bell-jackiw anomaly and weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  13. K. Fujikawa, Path-integral measure for gauge-invariant fermion theories. Phys. Rev. Lett. 42, 1195–1198 (1979)

    Article  ADS  Google Scholar 

  14. K. Fujikawa, Path integral for gauge theories with fermions. Phys. Rev. D 21, 2848–2858 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  15. M.A. Stephanov, Y. Yin, Chiral kinetic theory. Phys. Rev. Lett. 109, 162001 (2012)

    Article  ADS  Google Scholar 

  16. D.T. Son, N. Yamamoto, Berry curvature, triangle anomalies, and the chiral magnetic effect in fermi liquids. Phys. Rev. Lett. 109, 181602 (2012)

    Article  ADS  Google Scholar 

  17. J.-W. Chen, J.-Y. Pang, S. Pu, Q. Wang, Kinetic equations for massive dirac fermions in electromagnetic field with non-abelian berry phase. Phys. Rev. D 89, 094003 (2014)

    Article  ADS  Google Scholar 

  18. M.P. Marder, Condensed Matter Physics (Wiley, 2015)

    Google Scholar 

  19. M. Stone, V. Dwivedi, T. Zhou, Berry phase, lorentz covariance, and anomalous velocity for dirac and weyl particles. Phys. Rev. D 91, 025004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Sundaram, Q. Niu, Wave-packet dynamics in slowly perturbed crystals: gradient corrections and berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999)

    Article  ADS  Google Scholar 

  21. D. Culcer, Y. Yao, Q. Niu, Coherent wave-packet evolution in coupled bands. Phys. Rev. B 72, 085110 (2005)

    Article  ADS  Google Scholar 

  22. D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Xiao, J. Shi, Q. Niu, Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005)

    Article  ADS  Google Scholar 

  24. C. Manuel, Hard dense loops in a cold non-abelian plasma. Phys. Rev. D 53, 5866–5873 (1996)

    Article  ADS  Google Scholar 

  25. D.K. Hong, Aspects of high density effective theory in qcd. Nucl. Phys. B 582, 451–476 (2000)

    Article  ADS  Google Scholar 

  26. D. Xiao, W. Yao, Q. Niu, Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007)

    Article  ADS  Google Scholar 

  27. J. Ma, D.A. Pesin, Chiral magnetic effect and natural optical activity in metals with or without weyl points. Phys. Rev. B 92, 235205 (2015)

    Article  ADS  Google Scholar 

  28. K.-S. Kim, H.-J. Kim, M. Sasaki, Boltzmann equation approach to anomalous transport in a weyl metal. Phys. Rev. B 89, 195137 (2014)

    Article  ADS  Google Scholar 

  29. G.M. Monteiro, A.G. Abanov, D.E. Kharzeev, Magnetotransport in dirac metals: chiral magnetic effect and quantum oscillations. Phys. Rev. B 92, 165109 (2015)

    Article  ADS  Google Scholar 

  30. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  31. D.T. Son, B.Z. Spivak, Chiral anomaly and classical negative magnetoresistance of weyl metals. Phys. Rev. B 88, 104412 (2013)

    Article  ADS  Google Scholar 

  32. B. Yan, C. Felser, Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017)

    Article  ADS  Google Scholar 

  33. J. Gooth, et al., Experimental signatures of the mixed axial–gravitational anomaly in the weyl semimetal nbp. Nature 547, 324 EP (2017)

    Article  ADS  Google Scholar 

  34. C.-X. Liu, P. Ye, X.-L. Qi, Chiral gauge field and axial anomaly in a weyl semimetal. Phys. Rev. B 87, 235306 (2013)

    Article  ADS  Google Scholar 

  35. A. Cortijo, Y. Ferreiros, K. Landsteiner, M.A.H. Vozmediano, Elastic gauge fields in weyl semimetals. Phys. Rev. Lett. 115, 177202 (2015)

    Article  ADS  Google Scholar 

  36. K. Landsteiner, Anomalous transport of weyl fermions in weyl semimetals. Phys. Rev. B 89, 075124 (2014)

    Article  ADS  Google Scholar 

  37. M.N. Chernodub, Anomalous transport due to the conformal anomaly. Phys. Rev. Lett. 117, 141601 (2016)

    Article  ADS  Google Scholar 

  38. I. Fredholm, Sur une classe dequations fonctionnelles. Acta Math. 27, 365–390 (1903)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Almost all my knowledge of anomalies and transport in Weyl semimetals come from conversations with my colleagues and friends. Specially I would like to thank Maria A. H. Vozmediano, Karl Landstenier, Maxim Chernodoub, Yago Ferreiros, Fernando de Juan, and Adolfo G. Grushin. I also acknowledge financial support through the MINECO/AEI/FEDER, UE Grant No. FIS2015-73454-JIN, and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT3007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cortijo .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, I will explain some technicalities about the way to solve inhomogeneous Fredholm integral equations of second kind. General approaches, like the resolvent formalism, are based on iterative series, but when the integral kernel is separable (as the ones we find when we solve the Boltzmann equation in series of \(\alpha \)), the problem can be reduced to an algebraic one.

Let us consider the following integral equation, where g(x) is the function we want to find, and satisfies the following equation:

$$\begin{aligned} g(x)=f(x)+\int ^{b}_{a}\mathrm{d}x^{\prime }K(x,x^{\prime })g(x^{\prime }). \end{aligned}$$
(7.59)

The kernel \(K(x,x^{\prime })\) is separable when we can write it as a (finite) sum of products of functions of x and \(x^{\prime }\):

$$\begin{aligned} K(x,x^{\prime })=\sum _{n}P_{n}(x)Q_{n}(x^{\prime }). \end{aligned}$$
(7.60)

Putting this expression back into our equation, we get

$$\begin{aligned} g(x)=f(x)+\sum _{n}P_{n}(x)\int ^{b}_{a}\mathrm{d}x^{\prime }Q_{n}(x^{\prime })g(x^{\prime }), \end{aligned}$$
(7.61)

and write \(b_{n}\equiv \int ^{b}_{a}\mathrm{d}x^{\prime }Q_{n}(x^{\prime })g(x^{\prime })\), so

$$\begin{aligned} g(x)=f(x)+\sum _{n}P_{n}(x)b_n. \end{aligned}$$
(7.62)

If we now multiply both sides by \(Q_{m}(x)\) and integrate, we have

$$\begin{aligned} b_m=\int ^{b}_{a}\mathrm{d}x Q_{m}(x)f(x)+\sum _{n}\int ^{b}_{a}\mathrm{d}x Q_{m}(x)P_{n}(x)b_n. \end{aligned}$$
(7.63)

If we define the parameters \(c_{m}=\int ^{b}_{a}\mathrm{d}x Q_{m}(x)f(x)\) and \(a_{mn}=\int ^{b}_{a}\mathrm{d}x Q_{m}(x)P_{n}(x)\), we get an algebraic set of equations

$$\begin{aligned} b_m=c_{m}+\sum _{n}a_{mn}b_n, \end{aligned}$$
(7.64)

or

$$\begin{aligned} \sum _{n}(\delta _{mn}-a_{mn})b_n=c_{m}. \end{aligned}$$
(7.65)

Once we obtain the coefficients \(b_{m}\), we can go back to (7.62) and plug them into the expression for g(x). It is clear that if the matrix \(a_{mn}\) has at least one eigenvalue equal to one, the algebraic equation (and therefore the integral equation) has no solutions, provided that the corresponding element of the vector \(\mathbf {c}\) is nonzero. This result, when properly stated, is known as the Fredholm alternative [38].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortijo, A. (2018). Anomalies and Kinetic Theory. In: Bercioux, D., Cayssol, J., Vergniory, M., Reyes Calvo, M. (eds) Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-76388-0_7

Download citation

Publish with us

Policies and ethics