Skip to main content

Grid-Characteristic Method

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 90))

Abstract

In this chapter, a family of grid-characteristic methods for numerical simulation is considered. These methods are developed and used to solve a wide range of applied problems: traumatology, ultrasound studies of the human body, ultrasonic operations, seismic exploration of oil and gas, seismic resistance of residential and industrial facilities, non-destructive testing of railways and innovative materials including composites, development territories with complex natural conditions, shock effects on complex-shaped structures, and global seismic of various planets of the solar system. The methods allow to simulate the wave processes in heterogeneous media of complex topology and dynamic process of destruction of these media. Also these methods help to investigate clearly small heterogeneous features that represent breaks in the integration domain. Grid-characteristic methods are used to solve the hyperbolic systems of equations describing the wave processes. In this chapter, the elastic waves in isotropic and anisotropic cases and acoustic waves are considered. The method is well paralleled and actively implemented in software using the high-performance computing systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Favorskaya A, Petrov I, Grinevskiy A (2017) Numerical simulation of fracturing in geological medium. Procedia Comput Sci 112:1216–1224

    Article  Google Scholar 

  2. Favorskaya AV, Petrov IB, Vasyukov AV, Ermakov AS, Beklemysheva KA, Kazakov AO, Novikov AV (2014) Numerical simulation of wave propagation in anisotropic media. Dokl Math 90(3):778–780

    Article  MATH  Google Scholar 

  3. Favorskaya A, Petrov I, Golubev V, Khokhlov N (2017) Numerical simulation of earthquakes impact on facilities by grid-characteristic method. Procedia Comput Sci 112:1206–1215

    Article  MATH  Google Scholar 

  4. Favorskaya AV, Petrov IB (2016) Wave responses from oil reservoirs in the Arctic shelf zone. Dokl Earth Sci 466(2):214–217

    Article  Google Scholar 

  5. Petrov IB, Favorskaya AV, Sannikov AV, Kvasov IE (2013) Grid-characteristic method using high order interpolation on tetrahedral hierarchical meshes with a multiple time step. Math Models Comput Simul 5(5):409–415

    Article  MATH  Google Scholar 

  6. Biryukov VA, Miryakha VA, Petrov IB, Khokhlov NI (2016) Simulation of elastic wave propagation in geological media: intercomparison of three numerical methods. Comput Math Math Phys 56(6):1086–1095

    Article  MathSciNet  MATH  Google Scholar 

  7. Golubev VI, Petrov IB, Khokhlov NI (2015) Simulation of seismic processes inside the planet using the hybrid grid-characteristic method. Math Models Comput Simul 7(5):439–445

    Article  MathSciNet  MATH  Google Scholar 

  8. Favorskaya AV, Petrov IB (2016) A study of high-order grid-characteristic methods on unstructured grids. Numer Anal Appl 9(2):171–178

    Article  MathSciNet  MATH  Google Scholar 

  9. Beklemysheva KA, Favorskaya AV, Petrov IB (2014) Numerical simulation of processes in solid deformable media in the presence of dynamic contacts using the grid-characteristic method. Math Models Comput Simul 6(3):294–304

    Article  MATH  Google Scholar 

  10. Vasyukov AV, Ermakov AS, Potapov AP, Petrov IB, Favorskaya AV, Shevtsov AV (2014) Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems. Comput Math Math Phys 54(7):1176–1189

    Article  MathSciNet  MATH  Google Scholar 

  11. Magomedov KM, Kholodov AS (1988) Grid characteristic methods. Nauka, Moscow

    MATH  Google Scholar 

  12. LeVeque R (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Google Scholar 

  13. Carcione JM, Herman GC, Kroode APE (2002) Seismic modeling. Geophysics 67(4):1304–1325

    Article  Google Scholar 

  14. Nikitin IS (2008) Dynamic models of layered and block media with slip, friction and separation. Mech Solids 43(4):652–661

    Article  Google Scholar 

  15. Nikitin IS (2011) Constitutive relations for a growing masonry with setting mortar. Mech Solids 46(5):669–677

    Article  Google Scholar 

  16. Nikitin I, Burago N (2016) A refined theory of the layered medium with the slip at the interface. Chapter 6 in book: continuous Media with Microstructure 2. In: Albers B, Kuczma M (eds) Springer International Publishing Switzerland, pp 77–94

    Google Scholar 

  17. Burago NG, Nikitin IS (2016) Improved model of a layered medium with slip on the contact boundaries. J Appl Math Mech 80(2):164–172

    Article  MathSciNet  Google Scholar 

  18. Nikitin IS, Burago NG, Nikitin AD (2017) Continuum model of the layered medium with slippage and nonlinear conditions at the interlayer boundaries. Solid State Phenom 258:137–140

    Article  Google Scholar 

  19. Ainsworth M, Wajid HA (2009) Dispersive and dissipative behavior of the spectral element method. SIAM J Numer Anal 47(5):3910–3937

    Article  MathSciNet  MATH  Google Scholar 

  20. Ainsworth M, Monk P, Muniz W (2006) Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J Sci Comput 27(1):5–40

    Article  MathSciNet  MATH  Google Scholar 

  21. Alford RM, Kelly KR, Boore DM (1974) Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics 39(6):834–842

    Article  Google Scholar 

  22. Bohlen T, Saenger EH (2006) Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophysics 71(4):T109–T115

    Article  Google Scholar 

  23. Chen JB (2014) A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method. Geophys Prospect 62(2):258–277

    Article  Google Scholar 

  24. Cohen GC, Gaunaurd GC (2002) Higher-order numerical methods for transient wave equations. Scientific computation. Appl Mech Rev 55:B85

    Article  Google Scholar 

  25. Seriani G, Oliveira SP (2008) Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45(6):729–744

    Article  MathSciNet  MATH  Google Scholar 

  26. Saenger EH, Gold N, Shapiro SA (2000) Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion 31(1):77–92

    Article  MathSciNet  MATH  Google Scholar 

  27. Moczo P, Kristek J, Galis M, Pazak P (2010) On accuracy of the finite-difference and finite-element schemes with respect to P-wave to S-wave speed ratio. Geophys J Int 182(1):493–510

    Google Scholar 

  28. Moczo P, Kristek J, Gális M (2014) The finite-difference modelling of earthquake motions: waves and ruptures. Cambridge University Press, Cambridge

    Google Scholar 

  29. Alpert B, Greengard L, Hagstrom T (2002) Nonreflecting boundary conditions for the time-dependent wave equation. J Comput Phys 180(1):270–296

    Article  MathSciNet  MATH  Google Scholar 

  30. Alpert B, Greengard L, Hagstrom T (2000) Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J Numer Anal 37(4):1138–1164

    Article  MathSciNet  MATH  Google Scholar 

  31. Bécache E, Givoli D, Hagstrom T (2010) High-order absorbing boundary conditions for anisotropic and convective wave equations. J Comput Phys 229(4):1099–1129

    Article  MathSciNet  MATH  Google Scholar 

  32. Appelö D, Kreiss G (2006) A new absorbing layer for elastic waves. J Comput Phys 215(2):642–660

    Article  MathSciNet  MATH  Google Scholar 

  33. Belotserkovskii OM (2000) Modern solution methods for nonlinear multidimensional problems. The Edwin Mellen Press, Mathematics. Mechanics. Turbulence

    Google Scholar 

  34. Thomsen L (1995) Elastic anisotropy due to aligned cracks in porous rock. Geophys Prospect 43:805–829

    Article  Google Scholar 

  35. Hsu C-J, Schoenberg M (1993) Elastic waves through a simulated fractured medium. Geophysics 58(7):964–977

    Article  Google Scholar 

  36. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  37. Winterstein DF (1990) Velocity anisotropy terminology for geophysicists. Geophysics 55:1070–1088

    Article  Google Scholar 

  38. Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, Oxford

    Google Scholar 

  39. Petrov IB, Favorskaya AV, Khokhlov NI, Miryakha VA, Sannikov AV, Golubev VI (2015) Monitoring the state of the moving train by use of high performance systems and modern computation methods. Math Models Comput Simul 7(1):51–61

    Article  Google Scholar 

Download references

Acknowledgements

This work has been performed at Non-state Educational Institution “Educational Scientific and Experimental Center of Moscow Institute of Physics and Technology” and supported by the Russian Science Foundation, grant no. 17-71-20088. This work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena V. Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favorskaya, A.V., Petrov, I.B. (2018). Grid-Characteristic Method. In: Favorskaya, A., Petrov, I. (eds) Innovations in Wave Processes Modelling and Decision Making. Smart Innovation, Systems and Technologies, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-76201-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76201-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76200-5

  • Online ISBN: 978-3-319-76201-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics