Skip to main content

Design of an Indoor Autonomous Robot Navigation System for Unknown Environments

  • Conference paper
  • First Online:
Book cover Modelling and Simulation for Autonomous Systems (MESAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10756))

  • 1813 Accesses

Abstract

In this work is presented a novel platform able to navigate autonomously in unknown indoor environments. The system has been designed as a framework with different interconnected modules in order to be able to apply the same navigation system to different robotic platforms. The proposed framework is a real–time system developed on board of the robot, without the need of external computing units. The entire system has been tested and evaluated on multi–rotors vehicles with different hardware configurations, evaluating the performance and the quality of the reconstructed map. Experimental results show a promising robust and highly accurate indoor navigation module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://youtu.be/TysTArSvg-o.

References

  1. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  2. Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open source robotics framework for deeply embedded platforms. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6235–6240. IEEE (2015)

    Google Scholar 

  3. Labbe, M., Michaud, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Rob. 29(3), 734–745 (2013)

    Article  Google Scholar 

  4. Mannucci, A., Nardi, S., Pallottino, L.: Autonomous 3D exploration of large areas: a cooperative frontier-based approach. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 18–39. Springer, Cham (2017)

    Google Scholar 

  5. ETH Zurich: Qgroundcontrol: ground control station for small air land water autonomous unmanned systems (2013)

    Google Scholar 

  6. Labbe, M., Michaud, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2661–2666. IEEE (2014)

    Google Scholar 

  7. Misra, P., Enge, P.: Global Positioning System: Signals, Measurements and Performance, 2nd edn. Ganga-Jamuna Press, Massachusetts (2006)

    Google Scholar 

  8. Meier, L., Camacho, J., Godbolt, B., Goppert, J., Heng, L., Lizarraga, M., et al.: MAVLink: micro air vehicle communication protocol (2013). Tillgänglig: http://qgroundcontrol.org/mavlink/start. Hämtad 22 May 2014

  9. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a system for autonomous flight using onboard computer vision. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2992–2997. IEEE (2011)

    Google Scholar 

  10. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon “next-best-view” planner for 3D exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1462–1468. IEEE (2016)

    Google Scholar 

  11. Nardi, S., Della Santina, C., Meucci, D., Pallottino, L.: Coordination of unmanned marine vehicles for asymmetric threats protection. In: OCEANS 2015-Genova, pp. 1–7. IEEE (2015)

    Google Scholar 

  12. Nardi, S., Fabbri, T., Caiti, A., Pallottino, L.: A game theoretic approach for antagonistic-task coordination of underwater autonomous robots in asymmetric threats scenarios. In: OCEANS 2016-Monterey. IEEE (2016)

    Google Scholar 

  13. Nardi, S., Pallottino, L.: NoStop: an open source framework for design and test of coordination protocol for asymmetric threats protection in marine environment. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 176–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Nardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silvestri, L., Pallottino, L., Nardi, S. (2018). Design of an Indoor Autonomous Robot Navigation System for Unknown Environments. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science(), vol 10756. Springer, Cham. https://doi.org/10.1007/978-3-319-76072-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76072-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76071-1

  • Online ISBN: 978-3-319-76072-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics