Skip to main content

Protein Fold Recognition Exploited by Computational and Functional Approaches: Recent Insights

  • Reference work entry
  • First Online:
Handbook of Computational Neurodegeneration

Abstract

Proteins are important macromolecules in living organisms and serve basic functions in almost all biological processes. The function of a protein depends directly on how the conformation of the polymer sequence is folded. Protein folding is a highly synergistic process and multiple structure prediction models, along with biochemical experimental methods, have been proposed over the last couple of decades with ever-increasing accuracy. Predicting the native three-dimensional structure by settling the folding process code has recently been of great significance in terms of computational complexity and biological limitations, as misfolded protein aggregates have been associated with neurological diseases including Creutzfeldt-Jacob, Alzheimer’s, and Parkinson’s disease. The combination of multiple techniques for developing ensemble methods has led to great improvement in fold prediction accuracy, a field that is considered one of the most fundamental unsolved scientific challenges, the solution of which promises biological and therapeutic breakthroughs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul S (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42:D310–D314

    Article  CAS  PubMed  Google Scholar 

  • Andreeva A, Kulesha E, Gough J, Murzin AG (2020) The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res 48:D376–D382

    Article  CAS  PubMed  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  • Argudo PG, Giner-Casares JJ (2021) Folding and self-assembly of short intrinsically disordered peptides and protein regions. Nanoscale Advan 3:1789–1812

    Article  CAS  Google Scholar 

  • Bahar İ (1999) Dynamics of proteins and biomolecular complexes: Inferring functional motions from structure. Rev Chem Eng 15:319–347

    Article  CAS  Google Scholar 

  • Ben-Naim A (2011) Pitfalls in Anfinsen’s thermodynamic hypothesis. Chem Phys Letters 511:126–128

    Article  CAS  Google Scholar 

  • Ben-Naim A (2012) Levinthal’s question revisited, and answered. J Biomol Struct Dynam 30:113–124

    Article  CAS  Google Scholar 

  • Bonnici V, Giugno R, Pulvirenti A, Shasha D, Ferro A (2013) A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinform 14:S1

    Article  Google Scholar 

  • Dehouck Y, Gilis D, Rooman M (2006) A new generation of statistical potentials for proteins. Biophysical J 90:4010–4017

    Article  CAS  Google Scholar 

  • Fang Y (2015) Thermodynamic principle revisited: theory of protein folding. Advan Biosci Biotechnol 6:37–48

    Article  Google Scholar 

  • Fang Y, Jing J (2010) Geometry, thermodynamics, and protein. J Theor Biol 262:383–390

    Article  CAS  PubMed  Google Scholar 

  • Gawehn E, Hiss JA, Schneider G (2015) Deep learning in drug discovery. Mol Inform 35:3–14

    Article  PubMed  Google Scholar 

  • Halkides CJ (2013) Using molecular models to show steric clash in peptides: an illustration of two disallowed regions in the Ramachandran diagram. J Chem Edu 90:760–762

    Article  CAS  Google Scholar 

  • Han K, Liu Y, Yu D (2021) RFRSN: Improving protein fold recognition by Siamese network. 1–21

    Google Scholar 

  • Hansmann Ulrich HE, Okamoto Y (1999) New Monte Carlo algorithms for protein folding. Current Opin Struct Biol 9:177–183

    Article  Google Scholar 

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780

    Article  CAS  PubMed  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65:712–725

    Article  CAS  Google Scholar 

  • Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceeding of the 32nd international conference on machine learning, vol 37, pp 448–456

    Google Scholar 

  • Jo T, Cheng J (2014) Improving protein fold recognition by random forest. BMC Bioinform 15:S14

    Article  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) LightGBM: a highly efficient gradient boosting decision tree. In: Advances in neural information processing systems, p 30

    Google Scholar 

  • Kovács IA, Luck K, Spirohn K, Wang Y, Pollis C, Schlabach S, Bian W, Kim DK, Kishore N, Hao T, Calderwood MA, Vidal M, Barabási AL (2019) Network-based prediction of protein interactions. Nat Commun 10:1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Kresl P, Rahimi J, Gelpi E, Aldecoa I, Ricken G, Danics K, Keller E, Kovacs GG (2019) Accumulation of prion protein in the vagus nerve in creutzfeldt–Jakob disease. Annal Neurol 85:782–787

    Article  CAS  PubMed  Google Scholar 

  • Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J (2019) Critical assessment of methods of protein structure prediction (CASP)-round XIII. Proteins 87:1011–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kufareva I, Abagyan R (2011) Methods of protein structure comparison. Homology Model 857:231–257

    Article  Google Scholar 

  • Lewis PN, Momany FA, Scheraga HA (1971) Folding of polypeptide chains in proteins: a proposed mechanism for folding. Proc Natl Acad Sci 68:2293–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl E, Elofsson A (2000) Identification of related proteins on family, superfamily and fold level. J Mol Biol 295:613–625

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang X, Lin L, Dong Q, Wang X (2008) A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis. BMC Bioinform 9:510

    Article  Google Scholar 

  • Liu B, Li C-C, Yan K (2020a) DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Brief Bioinform 21:1733–1741

    Article  PubMed  Google Scholar 

  • Liu B, Zhu Y, Yan K (2020b) Fold-LTR-TCP: protein fold recognition based on triadic closure principle. Brief Bioinform 21:2185–2193

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Han K, Zhu YH, Zhang Y, Shen LC, Song J, Yu DJ (2021) Improving protein fold recognition using triplet network and ensemble deep learning. Brief Bioinform 22:bbab248

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcelino AMC, Gierasch LM (2008) Roles of β-turns in protein folding: from peptide models to protein engineering. Biopolymers 89:380–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T (2011) Assessment of template based protein structure predictions in CASP9. Proteins Struct Funct Bioinform 79(S10):37–58

    Article  CAS  Google Scholar 

  • Mishra P, Pandey PN (2011) A graph-based clustering method applied to protein sequences. Bioinformation 6:372–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to assess protein structure prediction methods. Proteins 23:ii–iv

    Article  CAS  PubMed  Google Scholar 

  • Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Advan Neural Inform Process Syst 14

    Google Scholar 

  • Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  CAS  PubMed  Google Scholar 

  • Outeiral C, Nissley DA, Deane CM (2022) Current structure predictors are not learning the physics of protein folding. Bioinformatics 38:1881–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra SM, Vishveshwara S (2000) Backbone cluster identification in proteins by a graph theoretical method. Biophys Chem 84:13–25

    Article  CAS  PubMed  Google Scholar 

  • Remmert M, Biegert A, Hauser A, Söding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175

    Article  CAS  Google Scholar 

  • Rost B (2001) Protein secondary structure prediction continues to rise. J Struct Biol 134:204–218

    Article  CAS  PubMed  Google Scholar 

  • Schlierf M, Rief M (2006) Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape. Biophysical J 90:L33–L35

    Article  CAS  Google Scholar 

  • Seemayer S, Gruber M, Söding J (2014) CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations. Bioinformatics 30:3128–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AW, Bridgland A, Penedones H (2020) Improved protein structure prediction using potentials from deep learning. Nature 577:706–710

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Yan K, Liu B (2021) FoldRec-C2C: protein fold recognition by combining cluster-to-cluster model and protein similarity network. Brief Bioinform 22:bbaa144

    Article  PubMed  Google Scholar 

  • Sikosek T, Chan HS (2014) Biophysics of protein evolution and evolutionary protein biophysics. J Royal Soc Interf 11:20140419

    Article  Google Scholar 

  • Silva MV, Loures CD, Alves LC, de Souza LC, Borges KB, Carvalho MD (2019) Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 26:1–11

    Article  Google Scholar 

  • Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  • Srivastana N, Hinton G, Krizhevsky A, Sutskever I, Slakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

    Google Scholar 

  • Ulmschneider JP, Ulmschneider MB, Di Nola A (2006) Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations. J Phys Chem B 110:16733–16742

    Article  CAS  PubMed  Google Scholar 

  • Villegas-Morcillo A, Gomez AM, Morales-Cordovilla JA, Sanchez V (2021a) Protein fold recognition from sequences using convolutional and recurrent neural networks. IEEE/ACM Trans Comput Biol Bioinforma 18:2848–2854

    Article  CAS  Google Scholar 

  • Villegas-Morcillo A, Sanchez V, Gomez AM (2021b) FoldHSphere: deep hyperspherical embeddings for protein fold recognition. BMC Bioinform 22:490

    Article  CAS  Google Scholar 

  • Vishveshwara S, Brinda KV, Kannan N (2002) Protein structure: insights from graph theory. J Theor Comput Chem 1:187–211

    Article  CAS  Google Scholar 

  • Voegler Smith A, Hall CK (2001) α-Helix formation: discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins 44:344–360

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Li Z, Liu W (2018) Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5265–5274

    Google Scholar 

  • Wei GW (2019) Protein structure prediction beyond AlphaFold. Nat Mach Intell 1:336–337

    Article  Google Scholar 

  • Yan Y, Zhang S, Wu FX (2011) Applications of graph theory in protein structure identification. Proteome Sci 9:S17

    Article  PubMed  PubMed Central  Google Scholar 

  • Yegnanarayanan V, Narayanaa YK (2020) Understanding Alzheimer’s disease through graph theory. J Appl Math Phys 8:2182–21950

    Article  Google Scholar 

  • Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ma H, Qian W, Li H (2020) Protein structure optimization using improved simulated annealing algorithm on a three-dimensional AB off-lattice model. Computational Biol Chem 85:107237

    Article  CAS  Google Scholar 

  • Zhu J, Zhang H, Li SC, Wang C, Kong L, Sun S, Zheng WM, Bu D (2017) Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts. Bioinformatics 33:3749–3757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Regional Excellence (Research Activity in the Ionian University, for the study of protein folding in neurodegenerative diseases) (FOLDIT) MIS 5047144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios G. Krokidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Krokidis, M.G., Efraimidis, E., Cheirdaris, D., Vrahatis, A.G., Exarchos, T.P. (2023). Protein Fold Recognition Exploited by Computational and Functional Approaches: Recent Insights. In: Vlamos, P., Kotsireas, I.S., Tarnanas, I. (eds) Handbook of Computational Neurodegeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-75922-7_27

Download citation

Publish with us

Policies and ethics