Skip to main content

Systems of Nanoparticles with SAMs and Polymers

  • Chapter
  • First Online:
Ellipsometry of Functional Organic Surfaces and Films

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 52))

  • 1454 Accesses

Abstract

This chapter reviews the use of spectroscopic ellipsometry (SE) as a characterization tool for nanoparticle-polymer and nanoparticle-SAM hybrids. The development of such materials is based on the drive toward technological applications of new functional organic materials in solar cells, flat screen displays, sensors and organic electronics. For many of these application the optical properties of the materials are of critical importance for the device operation. In this respect, an accurate and complete determination of the frequency-dependent complex dielectric function, \(\varepsilon ( \omega ) = \varepsilon ' + i \varepsilon ''\), of the materials over a wide spectral range is the primary goal of SE characterization. The major focus of the chapter will be to present optical models that are needed to analyze the data; specifically to develop models that describe the effective dielectric function of a film of NPs supported by, or embedded in, an organic matrix. Starting with the Mie solution to Maxwell’s equations, examples of various nanoparticle scattering cross-sections are presented to show the influence of the particle size and material properties. Modeling composites then requires making the step from individual NPs to arrays and composites by using the effective medium approximation. Finally the origin of anisotropy will be described and models for the dielectric tensor elements presented. Examples from the literature will be referred to throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Roy, J. Fendler, Adv. Mater. 16, 479 (2004)

    Google Scholar 

  2. V. Korstgens, J. Wiedersich, R. Meier, J. Perlich, S.V. Roth, R. Gehrke, P. Muller-Buschbaum, Anal. Bioanal. Chem. 396, 139 (2010)

    Google Scholar 

  3. K.B. Rodenhausen et al., Rev. Sci. Instrum. 82, 103111 (2011)

    Google Scholar 

  4. G. Mie, Ann. Phys. 25, 377 (1908)

    Google Scholar 

  5. R. Gans, Ann. Phys. 37, 881 (1912)

    Google Scholar 

  6. J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005)

    Google Scholar 

  7. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

    Google Scholar 

  8. A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M.L. de la Chapelle, Phys. Rev. B 71, 085416 (2005)

    Google Scholar 

  9. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Google Scholar 

  10. P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 125, 164705 (2006)

    Google Scholar 

  11. D.W. Lynch, W.R. Hunter, Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, New York, 1985)

    Google Scholar 

  12. http://www.philiplaven.com/mieplot.htm

  13. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, New J. Phys. 4, 93 (2002)

    Google Scholar 

  14. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  15. A.S. Keita, A.E. Naciri, F. Delachat, M. Carrada, G. Ferblantier, A. Slaoui, J. Appl. Phys. 107, 093516 (2010)

    Google Scholar 

  16. I. Moreels, D. Kruschke, P. Glas, J.W. Tomm, Opt. Mater. Express 2, 496 (2012)

    Google Scholar 

  17. F. Aslam, J. Stevenson-Hill, D.J. Binks, S. Daniels, N.L. Pickett, P. O’Brien, Chem. Phys. 334, 45 (2007)

    Google Scholar 

  18. Z.Q. Liang, K.L. Dzienis, J. Xu, Q. Wang, Adv. Funct. Mater. 16, 542 (2006)

    Google Scholar 

  19. A. Antonello, G. Brusatin, M. Guglielmi, A. Martucci, V. Bello, G. Mattei, P. Mazzoldi, G. Pellegrini, Thin Solid Films 518, 6781 (2010)

    Google Scholar 

  20. J. Hong, H. Park, Colloids Surf. A Physicochem. Eng. Asp. 381, 7 (2011)

    Google Scholar 

  21. N.J. Alvarez, S.L. Anna, T. Saigal, R.D. Tilton, L.M. Walker, Langmuir 28, 8052 (2012)

    Google Scholar 

  22. G. Herzog et al., Langmuir 28, 8230 (2012)

    Google Scholar 

  23. S. Chandran, J.K. Basu, Eur. Phys. J. E 34, 99 (2011)

    Google Scholar 

  24. J. Kim, H.X. Yang, P.F. Green, Langmuir 28, 9735 (2012)

    Google Scholar 

  25. M. Eita, H. Arwin, H. Granberg, L. Wagberg, J. Colloid Interface Sci. 363, 566 (2011)

    Google Scholar 

  26. D.J. Schmidt, F.C. Cebeci, Z.I. Kalcioglu, S.G. Wyman, C. Ortiz, K.J. Van Vliet, P.T. Hammond, ACS Nano 3, 2207 (2009)

    Google Scholar 

  27. H. Biederman, Surf. Coat. Technol. 205, S10 (2011)

    Google Scholar 

  28. H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, F. Faupel, Nanotechnology 17, 3499 (2006)

    Google Scholar 

  29. U. Schurmann, H. Takele, V. Zaporojtchenko, F. Faupel, Thin Solid Films 515, 801 (2006)

    Google Scholar 

  30. M. Prato, M. Alloisio, S.A. Jadhav, A. Chincarini, T. Svaldo-Lanero, F. Bisio, O. Cavalleri, M. Canepa, J. Phys. Chem. C 113, 20683 (2009)

    Google Scholar 

  31. C.W. Meuse, Langmuir 16, 9483 (2000)

    Google Scholar 

  32. H.C. Gonzalez, U.G. Volkmann, M.J. Retamal, M. Cisternas, M.A. Sarabia, K.A. Lopez, J. Chem. Phys. 136, 134709 (2012)

    Google Scholar 

  33. P.K.B. Palomaki, A. Krawicz, P.H. Dinolfo, Langmuir 27, 4613 (2011)

    Google Scholar 

  34. H. Nakanishi et al., Nature 460, 371 (2009)

    Google Scholar 

  35. M.D. Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 123, 1471 (2001)

    Google Scholar 

  36. L.Y. Wang et al., J. Phys. Chem. C 112, 2448 (2008)

    Google Scholar 

  37. S. Jaber, M. Karg, A. Morfa, P. Mulvaney, Phys. Chem. Chem. Phys. 13, 5576 (2011)

    Google Scholar 

  38. K.M. Mayya, A. Gole, N. Jain, S. Phadtare, D. Langevin, M. Sastry, Langmuir 19, 9147 (2003)

    Google Scholar 

  39. M.M. Giangregorio, M. Losurdo, G.V. Bianco, A. Operamolla, E. Dilonardo, A. Sacchetti, P. Capezzuto, F. Babudri, G. Bruno, J. Phys. Chem. C 115, 19520 (2011)

    Google Scholar 

  40. G. Bruno et al., Langmuir 26, 8430 (2010)

    Google Scholar 

  41. D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, Y.J. Chabal, J. Phys. Chem. C 114, 14180 (2010)

    Google Scholar 

  42. D.E. Aspnes, Thin Solid Films 519, 2571 (2011)

    Google Scholar 

  43. S. Rauch, K.J. Eichhorn, M. Stamm, P. Uhlmann, J. Vac. Sci. Technol. A Vac. Surf. Films 30, 041514 (2012)

    Google Scholar 

  44. R.H. Doremus, P. Rao, J. Mater. Res. 11, 2834 (1996)

    Google Scholar 

  45. U. Kreibig, C. Vonfrags, Z. Phys. 224, 307 (1969)

    Google Scholar 

  46. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)

    Google Scholar 

  47. A. Hilger, M. Tenfelde, U. Kreibig, Appl. Phys. B Lasers Opt. 73, 361 (2001)

    Google Scholar 

  48. T.W.H. Oates, E. Christalle, J. Phys. Chem. C 111, 182 (2007)

    Google Scholar 

  49. T.W.H. Oates, Appl. Phys. Lett. 88, 3 (2006)

    Google Scholar 

  50. M. Schadel, K.F. Jeltsch, P. Niyamakom, F. Rauscher, Y.F. Zhou, M. Kruger, K. Meerholz, J. Polym. Sci. Part B Polym. Phys. 50, 75 (2012)

    Google Scholar 

  51. M. Warenghem, J.F. Henninot, J.F. Blach, O. Buchnev, M. Kaczmarek, M. Stchakovsky, Rev. Sci. Instrum. 83, 035103 (2012)

    Google Scholar 

  52. G.J. Ruiterkamp, M.A. Hempenius, H. Wormeester, G.J. Vancso, J. Nanoparticle Res. 13, 2779 (2011)

    Google Scholar 

  53. Z. Balevicius, R. Drevinskas, M. Dapkus, G.J. Babonas, A. Ramanaviciene, A. Ramanavicius, Thin Solid Films 519, 2959 (2011)

    Google Scholar 

  54. S. Yamaguchi, J. Phys. Soc. Jpn. 15, 1577 (1960)

    Google Scholar 

  55. R.H. Doremus, J. Appl. Phys. 37, 2775 (1966)

    Google Scholar 

  56. R. Doremus, Thin Solid Films 326, 205 (1998)

    Google Scholar 

  57. H. Wormeester, E.S. Kooij, B. Poelsema, Phys. Status Solidi A Appl. Res. 205, 756 (2008)

    Google Scholar 

  58. H.L. Zhang, S.D. Evans, J.R. Henderson, Adv. Mater. 15, 531 (2003)

    Google Scholar 

  59. Z.M. Qi, I. Honma, M. Ichihara, H.S. Zhou, Adv. Funct. Mater. 16, 377 (2006)

    Google Scholar 

  60. D.A. Brevnov, C. Bungay, J. Phys. Chem. B 109, 14529 (2005)

    Google Scholar 

  61. H. Pan, S.H. Ko, C.P. Grigoropoulos, Appl. Phys. Lett. 93, 234104 (2008)

    Google Scholar 

  62. M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, D.L. Allara, Langmuir 23, 2414 (2007)

    Google Scholar 

  63. R.A. May, M.N. Patel, K.P. Johnston, K.J. Stevenson, Langmuir 25, 4498 (2009)

    Google Scholar 

  64. D.H. Wan, H.L. Chen, Y.S. Lin, S.Y. Chuang, J. Shieh, S.H. Chen, ACS Nano 3, 960 (2009)

    Google Scholar 

  65. T.W.H. Oates, L. Ryves, M.M.M. Bilek, Opt. Express 16, 2302 (2008)

    Google Scholar 

  66. H. Arwin, D.E. Aspnes, Thin Solid Films 113, 101 (1984)

    Google Scholar 

  67. S.V. Roth et al., J. Phys. Condens. Matter 23, 254208 (2011)

    Google Scholar 

  68. S.V. Roth et al., Appl. Phys. Lett. 88, 3 (2006)

    Google Scholar 

  69. R.R. Bhat, J. Genzer, Surf. Sci. 596, 187 (2005)

    Google Scholar 

  70. T.W.H. Oates, H. Sugime, S. Noda, J. Phys. Chem. C 113, 4820 (2009)

    Google Scholar 

  71. A. Hartstein, J.R. Kirtley, J.C. Tsang, Phys. Rev. Lett. 45, 201 (1980)

    Google Scholar 

  72. S.M. Tabakman et al., Nat. Commun. 2, 466 (2012)

    Google Scholar 

  73. Y. Nishikawa, K. Fujiwara, K. Ataka, M. Osawa, Anal. Chem. 65, 556 (1993)

    Google Scholar 

  74. T. Kamata, A. Kato, J. Umemura, T. Takenaka, Langmuir 3, 1150 (1987)

    Google Scholar 

  75. K. Itoh, K. Hayashi, Y. Hamanaka, M. Yamamoto, T. Araki, K. Iriyama, Langmuir 8, 140 (1992)

    Google Scholar 

  76. K. Ataka, J. Heberle, J. Am. Chem. Soc. 126, 9445 (2004)

    Google Scholar 

  77. X. Jiang, E. Zaitseva, M. Schmidt, F. Siebert, M. Engelhard, R. Schlesinger, K. Ataka, R. Vogel, J. Heberle, Proc. Natl. Acad. Sci. USA 105, 12113 (2008)

    Google Scholar 

  78. Y. Nishikawa, T. Nagasawa, K. Fujiwara, M. Osawa, Vib. Spectrosc. 6, 43 (1993)

    Google Scholar 

  79. T.R. Jensen, R.P. Van Duyne, S.A. Johnson, V.A. Maroni, Appl. Spectrosc. 54, 371 (2000)

    Google Scholar 

  80. M. Osawa, Surface-enhanced infrared absorption (2001)

    Google Scholar 

  81. A. Roseler, E.H. Korte, Thin Solid Films 313, 732 (1998)

    Google Scholar 

  82. K. Hinrichs, A. Roseler, K. Roodenko, J. Rappich, Appl. Spectrosc. 62, 121 (2008)

    Google Scholar 

  83. D.C. Bradford, E. Hutter, J.H. Fendler, D. Roy, J. Phys. Chem. B 109, 20914 (2005)

    Google Scholar 

  84. E. Garcia-Caurel, E. Bertran, A. Canillas, Thin Solid Films 398, 99 (2001)

    Google Scholar 

  85. A.E. Bjerke, P.R. Griffiths, W. Theiss, Anal. Chem. 71, 1967 (1999)

    Google Scholar 

  86. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Google Scholar 

  87. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Google Scholar 

  88. S. Yamaguchi, J. Phys. Soc. Jpn. 17, 1172 (1962)

    Google Scholar 

  89. T.W.H. Oates, M. Ranjan, S. Facsko, H. Arwin, Opt. Express 19, 2014 (2011)

    Google Scholar 

  90. R.A. Ferrell, Phys. Rev. 111, 1214 (1958)

    Google Scholar 

  91. D.W. Berreman, Phys. Rev. 130, 2193 (1963)

    Google Scholar 

  92. F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, J. Aizpurua, Phys. Rev. Lett. 101, 157403 (2008)

    Google Scholar 

  93. D. Enders, T. Nagao, A. Pucci, T. Nakayama, M. Aono, Phys. Chem. Chem. Phys. 13, 4935 (2011)

    Google Scholar 

  94. J. Kundu, F. Le, P. Nordlander, N.J. Halas, Chem. Phys. Lett. 452, 115 (2008)

    Google Scholar 

  95. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C.J. Zhang, P.V. Braun, H. Giessen, ACS Nano 6, 979 (2012)

    Google Scholar 

  96. R. Adato, A.A. Yanik, H. Altug, Nano Lett. 11, 5219 (2011)

    Google Scholar 

  97. R. Adato, A.A. Yanik, J.J. Amsden, D.L. Kaplan, F.G. Omenetto, M.K. Hong, S. Erramilli, H. Altug, Proc. Natl. Acad. Sci. USA 106, 19227 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. H. Oates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oates, T.W.H. (2018). Systems of Nanoparticles with SAMs and Polymers. In: Hinrichs, K., Eichhorn, KJ. (eds) Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75895-4_9

Download citation

Publish with us

Policies and ethics