Skip to main content

The Functional Genome in Physical Exercise

  • Chapter
  • First Online:
Concurrent Aerobic and Strength Training

Abstract

The genome is the key predictor of nearly all biological processes. Therefore, it is not surprising that the investigation of the genome as a predictor for physical performance remains the focus of research over the past 30 years. Starting with the investigation of short variations of the genes as predictor for physical performance and training adaptations, it was shown that polymorphisms can explain only a small percentage of the individual physical capacity. Thereafter, epigenetics became one of the key research fields in exercise physiology. This chapter will focus on the role of the functional genome determined by polymorphisms and epigenetics for health and performance. The interplay of physical activity/exercise and the functional genome will be explained for different tissue and organs with a specific focus to mechanisms of epigenetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.

    Article  Google Scholar 

  2. Mattson MP. Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev. 2015;20:37–45.

    Article  Google Scholar 

  3. Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014;25(7):1293–311.

    Article  CAS  Google Scholar 

  4. Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1(3):1603–48.

    PubMed  PubMed Central  Google Scholar 

  5. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.7.

    Google Scholar 

  6. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    Article  CAS  Google Scholar 

  7. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  Google Scholar 

  8. Kouzarides T, Berger SL. Chromatin modifications and their mechanism of action. In: Allis CD, Jenuwein T, Reinberg D, editors. Epigenetics. 1st ed. New York: Cold Spring Harbor Laboratory; 2006. p. 191–209.

    Google Scholar 

  9. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  CAS  Google Scholar 

  10. Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol. 2013;768:97–126.

    Article  CAS  Google Scholar 

  11. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  CAS  Google Scholar 

  12. Zimmer P, Bloch W. Physical exercise and epigenetic adaptations of the cardiovascular system. Herz. 2015;40(3):353–60.

    Article  CAS  Google Scholar 

  13. Zaina S, Pérez-Luque EL, Lund G. Genetics talks to epigenetics? The interplay between sequence variants and chromatin structure. Curr Genomics. 2010;11(5):359–67.

    Article  CAS  Google Scholar 

  14. Raleigh SM. Epigenetic regulation of the ACE gene might be more relevant to endurance physiology than I/D polymorphism. J Appl Physiol 2012;112:1082–3.

    Article  CAS  Google Scholar 

  15. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.

    Article  CAS  Google Scholar 

  16. Hayashino Y, Jackson JL, Hirata T, Fukumori N, et al. Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metabolism. 2014;63(3):431–40.

    Article  CAS  Google Scholar 

  17. Nakajima K, Takeoka M, Mori M, Hashimoto S, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31:671–5.

    Article  CAS  Google Scholar 

  18. Moresi V, Marroncelli N, Coletti D, Adamo S. Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. Biochim Biophys Acta. 2015;1849(3):309–16.

    Article  CAS  Google Scholar 

  19. McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009;587(Pt 24):5951–8.

    Article  CAS  Google Scholar 

  20. Willkomm L, Gehlert S, Jacko D, Schiffer T, Bloch W. p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle. PLoS One. 2017;12(5):e0176609.

    Article  Google Scholar 

  21. Safdar A, Abadi A, Akhtar M, Hettinga BP, et al. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 2009;4:e5610.

    Article  Google Scholar 

  22. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487–517.

    Article  CAS  Google Scholar 

  23. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–9.

    Article  CAS  Google Scholar 

  24. Hoofnagle MH, Wamhoff BR, Owens GK. Lost in transdifferentiation. J Clin Invest. 2004;113(9):1249–51.

    Article  CAS  Google Scholar 

  25. Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40.

    Article  CAS  Google Scholar 

  26. McDonald OG, Owens GK. Programming smooth muscle plasticity with chromatin dynamics. Circ Res. 2007;100:1428–41.

    Article  CAS  Google Scholar 

  27. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest. 2006;116:36–48.

    Article  CAS  Google Scholar 

  28. Archer SL, Marsboom G, Kim GH, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a base for excessive cell proliferation and a new therapeutic target. Circulation. 2010;121:2661–71.

    Article  CAS  Google Scholar 

  29. Kim GH, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal. 2013;18(15):1920–36.

    Article  CAS  Google Scholar 

  30. Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun. 2004;315:240–5.

    Article  CAS  Google Scholar 

  31. Chen KC, Wang YS, Hu CY, Chang WC, et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J. 2011;25(5):1718–28.

    Article  CAS  Google Scholar 

  32. Bátkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep. 2012;14:79–87.

    Article  Google Scholar 

  33. Wu XD, Zeng K, Liu WL, Gao YG, et al. Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. Int J Sports Med. 2014;35(4):344–50.

    PubMed  Google Scholar 

  34. Zhang J, Zhao F, Yu X, Lu X, Zheng G. MicroRNA-155 modulates the proliferation of vascular smooth muscle cells by targeting endothelial nitric oxide synthase. Int J Mol Med. 2015;35(6):1708–14.

    Article  CAS  Google Scholar 

  35. Zhuang Y, Peng H, Mastej V, Chen W. MicroRNA regulation of endothelial junction proteins and clinical consequence. Mediat Inflamm. 2016;2016:5078627. https://doi.org/10.1155/2016/5078627.

    Article  CAS  Google Scholar 

  36. Gielen S, Sandri M, Erbs S, Adams V. Exercise-induced modulation of endothelial nitric oxide production. Curr Pharm Biotechnol. 2011;12(9):1375–84.

    Article  CAS  Google Scholar 

  37. Fernandes T, Magalhães FC, Roque FR, Phillips MI, et al. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59:513–20.

    Article  CAS  Google Scholar 

  38. Shiva Shankar TV, Willems L. Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vascul Pharmacol. 2014;60(2):57–66.

    Article  CAS  Google Scholar 

  39. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124:1537–47.

    Article  CAS  Google Scholar 

  40. Zhang LX, DeNicola M, Qin X, Du J, et al. Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol. 2014;307(4):C358–72.

    Article  CAS  Google Scholar 

  41. Nguyen MA, Karunakaran D, Rayner KJ. Unlocking the door to new therapies in cardiovascular disease: microRNAs hold the key. Curr Cardiol Rep. 2014;16(11):539.

    Article  Google Scholar 

  42. Lehmann LH, Jebessa ZH, Kreusser MM, Horsch A, et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat Med. 2018;24(1):62–72.

    Article  CAS  Google Scholar 

  43. Soci UP, Fernandes T, Rosa KT, Irigoyen MC, et al. The role of microRNA-208a in cardiac hypertrophy. Clin Sci. 2016. pii:CS20160480 Epub ahead of print.

    Google Scholar 

  44. Montgomery RL, Potthoff MJ, Haberland M, et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest. 2011;118(11):3588–97.

    Article  Google Scholar 

  45. Tao H, Yang JJ, Shi KH, Deng ZY, Li J. DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology. 2014;323:125–9.

    Article  CAS  Google Scholar 

  46. Kwak HB. Aging, exercise, and extracellular matrix in the heart. J Exerc Rehabil. 2013;9(3):338–47.

    Article  Google Scholar 

  47. Soci UP, Fernandes T, Hashimoto NY, Mota GF, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rat. Physiol Genomics. 2011;43:665–73.

    Article  CAS  Google Scholar 

  48. Rönn T, Volkov P, Davegårdh C, Dayeh T, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572.

    Article  Google Scholar 

  49. Denham J, O’Brien BJ, Marques FZ, Charchar FJ. Changes in the leukocyte methylome and its effect on cardiovascular related genes after exercise. J Appl Physiol (1985). 2015;118(4):475–88.

    Article  CAS  Google Scholar 

  50. Denham J, Marques FZ, Bruns EL, O’Brien BJ, Charchar FJ. Epigenetic changes in leukocytes after 8 weeks of resistance exercise training. Eur J Appl Physiol. 2016;116(6):1245–53.

    Article  CAS  Google Scholar 

  51. Zimmer P, Bloch W, Schenk A, Zopf EM, et al. Exercise-induced natural killer cell activation is driven by epigenetic modifications. Int J Sports Med. 2015;36(6):510–5.

    Article  CAS  Google Scholar 

  52. Zimmer P, Baumann FT, Bloch W, Schenk A, et al. Impact of exercise on pro inflammatory cytokine levels and epigenetic modulations of tumor-competitive lymphocytes in Non-Hodgkin-Lymphoma patients-randomized controlled trial. Eur J Haematol. 2014;93(6):527–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Mrs. Christine Koliamitra for editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bloch, W. (2019). The Functional Genome in Physical Exercise. In: Schumann, M., Rønnestad, B. (eds) Concurrent Aerobic and Strength Training. Springer, Cham. https://doi.org/10.1007/978-3-319-75547-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75547-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75546-5

  • Online ISBN: 978-3-319-75547-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics