Skip to main content

Crystallographic Aspects of Interfaces in Ferroelectrics and Related Materials

  • Chapter
  • First Online:
Heterogeneous Ferroelectric Solid Solutions

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 151))

  • 497 Accesses

Abstract

Analysis of results on the study and classification of various interfaces in polydomain and heterophase ferroelectric single crystals and related materials is carried out. Classification of domain boundaries in ferroelectric single crystals is highlighted. An emphasis is placed on crystallographic methods that can be applied to study complicated domain (twin) structures and their rearrangement, heterophase states, features of the formation of the new phase, etc., in ferroelectric solid solutions. Examples of complete stress relief and zero-net-strain planes at the interphase boundaries in two-phase single crystals are discussed for many cases of first-order phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lines M, Glass A (1977) Principles and application of ferroelectrics and related materials. Clarendon Press, Oxford

    Google Scholar 

  2. Zheludev IS (1971) Physics of crystalline dielectrics, vol 2: Electrical properties. Plenum, New York

    Google Scholar 

  3. Smolensky GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI, Yushin NK (1985) Physics of ferroelectric phenomena. Nauka, Leningrad (in Russian)

    Google Scholar 

  4. Xu Y (1991) Ferroelectric materials and their applications. North-Holland, Amsterdam London New York Toronto

    Google Scholar 

  5. Fang D-N, Soh AK, Li C-Q, Jiang B (2001) Nonlinear behavior of 0–3 type ferroelectric composites with polymer matrices. J Mater Sci 36:5281–5288

    Article  Google Scholar 

  6. Malbec A, Liu T, Lynch CS (2004) Characterization and modeling of domain engineered relaxor ferroelectric single crystals. J de Physique IV (France) 115:59–66

    Article  Google Scholar 

  7. Turik AV (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Sov Phys Solid State 12:688–693

    Google Scholar 

  8. Topolov VYu, Bondarenko EI, Turik AV, Chernobabov AI (1993) The effect of domain structure on electromechanical properties of PbTiO3-based ferroelectrics. Ferroelectrics 140:175–181

    Article  Google Scholar 

  9. Topolov VYu (1999) Interfaces in ferroelectrics and related materials with complex domain structures. Ferroelectrics 222:41–52

    Article  Google Scholar 

  10. Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London

    Google Scholar 

  11. Fesenko EG, Gavrilyachenko VG, Semenchev AF (1990) Domain structure of multiaxial ferroelectric crystals. Rostov University Press, Rostov-on-Don (in Russian)

    Google Scholar 

  12. Rudyak VM (1986) Switching processes in nonlinear crystals. Nauka, Moscow (in Russian)

    Google Scholar 

  13. Shuvalov LA, Urusovskaya AA, Zheludev IS, Zalessky AV, Semiletov SA, Grechishnikov BN, Chistyakov IG, Pikin SA (1981) Modern crystallography, vol. 4. Nauka, Moscow (in Russian)

    Google Scholar 

  14. Zheludev IS, Shuvalov LA (1956) Ferroelectric phase transitions and symmetry of crystals. Kristallografiya 1:681–688 (in Russian)

    Google Scholar 

  15. Zheludev IS, Shuvalov LA (1957) Orientation of domains and macrosymmetry of properties of ferroelectric single crystals. Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 21:264–274 (in Russian)

    Google Scholar 

  16. Shuvalov LA (1963) Crystallographic classification of ferroelectrics. Ferroelectric phase transitions and features of the domain structure and some physical properties of ferroelectrics of different classification species. Kristallografiya 8:617–624 (in Russian)

    Google Scholar 

  17. Shuvalov LA (1964) Crystallophysical classification of ferroelectrics and its applications. Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 28:660–665 (in Russian)

    Google Scholar 

  18. Shuvalov LA (1970) Symmetry aspects of ferroelectricity. J Phys Soc Jpn 28 (Suppl.):38–51

    Google Scholar 

  19. Zheludev IS (1971) Ferroelectricity and symmetry. Solid state physics: advances in research and applications, vol 26. Academic Press, New York London, pp 429–464

    Google Scholar 

  20. Mitsui T, Furuichi J (1953) Domain structure of Rochelle salt and KH2PO4. Phys Rev 90:193–202

    Article  Google Scholar 

  21. Cao W, Cross LE (1991) Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys Rev B44:5–12

    Article  Google Scholar 

  22. Cao W (1995) Defect stabilized periodic amplitude modulations in ferroelectrics. Phase Transitions 55:69–78

    Article  Google Scholar 

  23. Nambu S, Sagala DA (1994) Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys Rev B 50:5838–5847

    Article  Google Scholar 

  24. Rosakis P, Jiang Q (1995) On the morphology of ferroelectric domains. Int J Eng Sci 33:1–12

    Article  Google Scholar 

  25. Dec J (1990) Orientacija i kinetyka granic fazowych w monokryształach PbTiO3, NaNbO3 i PbZrO3. Universytet Śląski, Katowice (in Polish)

    Google Scholar 

  26. Roytburd AL (1993) Elastic domains and polydomain phases in solids. Phase Transitions 45:1–33

    Article  Google Scholar 

  27. Topolov VYu, Turik AV (1995) Crystallographic aspects of interfaces in ferroelectrics. Defect Diffus Forum Pt A 123–124:31–50

    Article  Google Scholar 

  28. Roitburd AL (1974) The theory of the formation of a heterophase structure in phase transformations in solids. Sov Phys Uspehi 17:326–344

    Article  Google Scholar 

  29. Roitburd AL (1990) On the thermodynamics of martensite nucleation. Mater Sci Eng A 127:229–238

    Article  Google Scholar 

  30. Wechsler MS, Lieberman DS, Read TA (1953) On the theory of the formation of martensite. Trans AIME J Metals 197:1503–1515

    Google Scholar 

  31. Lieberman DS, Wechsler MS, Read TA (1955) Cubic to orthorhombic diffusionless phase change—experimental and theoretical studies of AuCd. J Appl Phys 26:473–484

    Article  Google Scholar 

  32. Bilby BA, Christian JW (1956) Martensistic transformations. The mechanism of phase transformations in metals. The Institute of Metals, London, pp 121–172

    Google Scholar 

  33. Larché FC (1990) Coherent phase transformations. Annu Rev Mater Sci 20:83–99

    Article  Google Scholar 

  34. Boulesteix C, Yangui B, Ben Salem M, Manolikas C, Amelinckx S (1986) The orientation of interfaces between a prototype phase and its ferroelastic derivatives: theoretical and experimental study. J de Physique (France) 47:461–471

    Article  Google Scholar 

  35. Kato M, Shibata-Yanagisawa M (1990) Infinitesimal deformation approach of the phenomenological crystallographic theory of martensitic transformations. J Mater Sci 25:194–202

    Article  Google Scholar 

  36. Dudnik EF, Shuvalov LA (1989) Domain structure and phase boundaries in ferroelastics. Ferroelectrics 98:207–214

    Article  Google Scholar 

  37. Fousek J, Janovec V (1969) The orientation of domain walls in twinned ferroelectric crystals. J Appl Phys 40:135–142

    Article  Google Scholar 

  38. Fousek J (1971) Permissible domain walls in ferroelectric species. Czech J Phys B 21:955–968

    Article  Google Scholar 

  39. Janovec V (1976) A symmetry approach to domain structures. Ferroelectrics 12:43–53

    Article  Google Scholar 

  40. Sapriel J (1975) Domain-wall orientations in ferroelastics. Phys Rev B 12:5128–5140

    Article  Google Scholar 

  41. Vagin SV, Dudnik EF (1983) Method of interpreting the domain structure of ferroelastics. Bull Acad Sci U.S.S.R. Phys Ser 47(3):78–81

    Google Scholar 

  42. Shuvalov LA, Dudnik EF, Pozdeyev VG (1987) Forbidden domain boundaries in ferroelastics. Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 51:2119–2123 (in Russian)

    Google Scholar 

  43. Boulesteix C (1984) A survey of domains and domain walls generated by crystallographic phase transitions causing a change of lattice. Physica Status Solidi (a) 86:11–42

    Article  Google Scholar 

  44. Barkley JR, Jeitschko W (1973) Antiphase boundaries and their interactions with domain walls in ferroelastic-ferroelectric Gd2(MoO4)3. J Appl Phys 44:938–944

    Article  Google Scholar 

  45. Capelle B, Malgrande C (1984) Antiphase domain walls in ferroelectric-ferroelastic GDMO crystals. In: Applications of X-ray topographic methods to materials science: proceedings of France–U.S.A. Seminar, Village, Colo., 7–10 August 1983. New York London, pp 511–522

    Google Scholar 

  46. Rychetsky I, Schranz W (1993) Antiphase boundaries in Hg2Br2 and KSCN. J Phys Condens Matter 5:1455–1472

    Article  Google Scholar 

  47. Salje EKH (1990) Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge New York Oakleigh

    Google Scholar 

  48. Heine V, Bratkovsky AM, Salje EKH (1994) The effect of clamped and free boundaries on long range strain coupling in structural phase transitions. Phase Transitions 52:85–93

    Article  Google Scholar 

  49. Wruck B, Salje EKH, Zhang M, Abraham T, Bismayer U (1994) On the thickness of feroelastic twin walls in lead phosphate Pb3(PO4)2: an X-ray diffraction study. Phase Transitions 48:135–148

    Article  Google Scholar 

  50. Bratkovsky AM, Salje EKH, Heine V (1994) Overwiew of the origin of tweed texture. Phase Transitions 52:77–83

    Article  Google Scholar 

  51. Putnis A, Salje E (1994) Tweed microstructures: experimental observations and some theoretical models. Phase Transitions 48:85–105

    Article  Google Scholar 

  52. Bratkovsky AM, Marais SC, Heine V, Salje EKH (1994) The theory of fluctuations and texture embryos in structural phase transitions mediated by strain. J Phys Condens Matter 6:3679–3696

    Article  Google Scholar 

  53. Viehland D, Li JF, Colla EV (2004) Domain structure changes in (1  x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 with composition, dc bias, and ac field. J Appl Phys 96:3379–3381

    Article  Google Scholar 

  54. Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid State Mater Sci 6:27–34

    Article  Google Scholar 

  55. Bokov AA, Ye Z-G (2004) Domain structure in the monoclinic Pm phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J Appl Phys 95:6347–6359

    Article  Google Scholar 

  56. Shuvaeva VA, Glazer AM, Zekria D (2005) The macroscopic symmetry of Pb(Mg1/3Nb2/3)1 − x Ti x O3 in the morphotropic phase boundary region (x = 0.25–0.5). J Phys: Condens Matter 17:5709–5723

    Google Scholar 

  57. Bokov AA, Ye Z-G (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–52

    Article  Google Scholar 

  58. Topolov VYu, Turik AV (1990) Elastic interaction of phases of Gd2(MoO4)3 crystals. Izvestiya Vysshikh Uchebnykh Zavedeniy, Fizika 33(3):68–72 (in Russian)

    Google Scholar 

  59. Nakamura T, Kondo T, Kumada A (1971) Observation of phase boundaries between ferro- and paraelectric phases in Gd2(MoO4)3 crystals. Solid State Commun 9:2265–2268

    Article  Google Scholar 

  60. Metrat G (1980) Theoretical determination of domain structure at transition from twinned phase: application to the tetragonal-orthorhombic transition of KNbO3. Ferroelectrics 26:801–804

    Article  Google Scholar 

  61. Topolov VYu, Rabe H, Schmid H (1993) Mechanical stresses and transition regions in polydomain Pb2CoWO6 crystals. Ferroelectrics 146:113–121

    Article  Google Scholar 

  62. Topolov VYu, Ye Z-G, Schmid H (1995) A crystallographic analysis of macrodomain structure in Pb(Mg1/3Nb2/3)O3. J Phys Condens Matter 7:3041–3049

    Article  Google Scholar 

  63. Topolov VYu, Ye Z-G (1996) Formation of the stress-induced mm2 phase at the ferroelastic—antiferroelectric \( \overline{4} \)3m\( \overline{4} \)2m phase transition in Cr–Cl boracite. J Phys Condens Matter 8:6087–6094

    Google Scholar 

  64. Topolov VYu (2007) Peculiarities of coexistence of heavily twinned phases in the (1 − x)Pb(Mg1/3Nb2/3)TiO3 − xPbTiO3 solid solutions at 0.23 ≤ x ≤ 0.30. Crystallogr Rep 52:297–301

    Article  Google Scholar 

  65. Balyunis LE, Topolov VYu, Bah IS, Turik AV (1993) The S-type domain and twin boundaries in plate-like PbZrO3 crystals having complicated twinned structures. J Phys Condens Matter 5:1419–1426

    Article  Google Scholar 

  66. Topolov VYu, Balyunis LE, Turik AV, Eremkin VV, Sori BI (1992) S-type twinning (domain) boundaries in PbZrO3 crystals. Sov Phys Crystallogr 37:223–226

    Google Scholar 

  67. Topolov VYu (1990) On variety of conditions for realization of S-type domain boundaries in ferroelectric crystals. In: Proceedings of the all-union conference “real structure and properties of acentric crystals”, September 17–22, 1990, Aleksandrov, VNIISIMS. Pt 2. Blagoveshchensk, pp 20–29 (in Russian)

    Google Scholar 

  68. Topolov VYu, Gagarina ES, Demidova VV (1995) Domain structure and related phenomena in PbYb0.5Nb0.5O3 crystals. Ferroelectrics 172:373–376

    Article  Google Scholar 

  69. Balyunis LE, Topolov VYu, Turik AV, Fesenko OE (1990) Optical and crystallographic studies of twin and phase boundaries in antiferroelectric PbHfO3. Ferroelectrics 111:291–298

    Article  Google Scholar 

  70. Topolov VYu, Turik AV, Fesenko OE, Eremkin VV (1995) Mechanical stresses and three-phase states in perovskite-type ferroelectrics. Ferroelectr Lett Sect 20:19–26

    Article  Google Scholar 

  71. Topolov VYu (1987) Electromechanical interactions in heterogeneous systems at ferroelectric phase transitions. Author’s Abstract to the Thesis, Cand. Sci. (Phys. & Math.). Rostov State University, Rostov-on-Don (in Russian)

    Google Scholar 

  72. Topolov VYu (1989) Analysis of conditions necessary for the existence of a flat non-deformed boundary separating polydomain ferroelastic phases. Bull Acad Sci USSR Phys Ser 53 (7), 51–54

    Google Scholar 

  73. Kuhn W (1991) Domain structures induced by phase transitions in BaTiO3 single crystals. Ferroelectr Lett Sect 13:101–108

    Article  Google Scholar 

  74. Topolov VYu (1998) Some features of three-phase states in PbZr1 − x Ti x O3 crystals. Crystallogr Rep 43:68–73

    Google Scholar 

  75. Lekhnitsky SG (1977) Elasticity theory of the anisotropic solid. Nauka, Moscow (in Russian)

    Google Scholar 

  76. Mura T (1987) Micromechanics of defects in solids. Martins Nijhoff Publications, Dordrecht

    Book  Google Scholar 

  77. Topolov VYu, Balyunis LE, Turik AV, Bah IS, Fesenko OE (1992) Interphase boundaries at cubic-rhombohedral phase transition in PbZrO3 crystals. Bull Russ Acad Sci Phys 56:1588–1593

    Google Scholar 

  78. Ye Z-G, Topolov VYu (2001) Complex domain and heterophase structures in Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Ferroelectrics 253:79–86

    Article  Google Scholar 

  79. Sciau PH, Calvarin G, Sun BN, Schmid H (1992) X-ray study of phase transitions of the elpasolite-like ordered perovskite Pb2CoWO6. Physica Status Solidi (a) 129:309–321

    Article  Google Scholar 

  80. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  81. Noheda B, Cox DE, Shirane G (2002) Phase diagram of the ferroelectric relaxor (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3. Phys Rev B 66:054104–10 p

    Article  Google Scholar 

  82. Kothai V, Senyshyn A, Ranjan R (2013) Competing structural phase transition scenarios in the giant tetragonality ferroelectric BiFeO3–PbTiO3: isostructural vs multiphase transition. J Appl Phys 113:084102–8 p

    Article  Google Scholar 

  83. Brajesh K, Tanwar K, Abebe M, Ranjan R (2015) Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba, Ca)(Ti, Zr)O3. Phys Rev B 92:224112–8 p

    Article  Google Scholar 

  84. Topolov VYU, Ye Z-G (2004) Coexistence of morphotropic phases in (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 solid solutions. Phys Rev B 70:094113–8 p

    Article  Google Scholar 

  85. Topolov VYu (2004) Unique three-phase states in (1  x)Pb(Zn1/3Nb2/3)O3xPbTiO3 single crystals. J Phys Condens Matter 16:2455–2461

    Article  Google Scholar 

  86. Topolov VYu, Brajesh K, Ranjan R, Panich AE (2017) Plausible domain configurations and phase contents in two- and three-phase BaTiO3-based lead-free ferroelectrics. J Phys D Appl Phys 50:065307–11 p

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Yu. Topolov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Topolov, V.Y. (2018). Crystallographic Aspects of Interfaces in Ferroelectrics and Related Materials. In: Heterogeneous Ferroelectric Solid Solutions. Springer Series in Materials Science, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-75520-5_1

Download citation

Publish with us

Policies and ethics