Skip to main content

Damping Behavior of Aluminum Replicated Foam

  • Chapter
  • First Online:
Progress in Materials Science and Engineering
  • 857 Accesses

Abstract

Damping is an important property of porous materials that defines its application for vibroinsulation. Damping of cast-replicated aluminum alloy AlSi7 (porosity 52–54%) has been investigated. In order to produce the specimen, the technique of vacuum impregnation of a leachable porous loose bed was applied. Damping was measured as the logarithmic decrement of free bending beam vibrations. Damping versus maximum strain amplitude of porous bending beams for various pore sizes has been obtained. As compared to the metal foams of higher porosity (85%), there is no considerable influence of pore size on the damping of replicated aluminum foam of small pore size (<1.6 mm). On the contrary, the damping behavior of replicated aluminum foam with coarse porous structure was like that of a metal foam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuchek, H. A. (1964). Patent US 3138856 Method of producing clad porous metal articles.

    Google Scholar 

  2. Despois, J.-F. (2005). Replicated aluminium foam, processing and properties, Ecole Politechnique Federale de Lausanne, p. 265.

    Google Scholar 

  3. Furman, E. L., Finkelstein, A. B., & Cherny, M. L. (2013). Permeability of aluminium foams produced by replication casting. Metals, 3(1), 49–57.

    Article  CAS  Google Scholar 

  4. Furman, E. L., Finkelstein, А. B., & Cherny, M. L. (2014). The anisotropy of replicated aluminum foams. Advances in Materials Science and Engineering, 1–6.

    Article  Google Scholar 

  5. Golovin, I. S., Sinning, H. R., Göken, J., & Riehemann, W. (2003). Amplitude dependent damping of some metallic foams. Solid State Phenomena, 89, 267–272.

    Article  CAS  Google Scholar 

  6. Zhang, Y., Ma, N., & Wang, H. (2007). Effect of particulate/Al interface on the damping behavior of in situ TiB2. Materials Letters, 61, 3273–3275.

    Article  CAS  Google Scholar 

  7. Göken, J., & Riehemann, W. (2002). Thermoelastic damping of the low density metals AZ91 and DISPAL. Materials Science and Engineering A, 324(1–2), 134–140.

    Article  Google Scholar 

  8. Kazantsev, S. P., & Husnullin, D. V. Technological processes of obtaining of replicated aluminium foam. Contemporary Engineering Sciences, 8(16), 723–727.

    Article  CAS  Google Scholar 

  9. Golovin, I. S., & Sinning, H.-R. (2003). Damping in some cellular metallic materials. Journal of Alloys and Compounds, 355(1–2), 2–9.

    Article  CAS  Google Scholar 

  10. Granato, A., & Lücke, K. (1956). Theory of mechanical damping due to dislocations. Journal of Applied Physics, 27(6), 583.

    Article  Google Scholar 

  11. Golovin, I. S., Sinning, H.-R., Göken, J., & Riehemann, W. (2001). Mechanical damping of some Al foams under cyclic deformation. Proc. of MetFoam, Int. Conf. on Cellular Metals and Metal Foaming Technology, 323–328.

    Google Scholar 

  12. Golovin, I. S., Sinning, H.-R., Göken, J., & Riehemann, W. (2004). Fatigue related damping in some cellular metallic materials. Materials Science and Engineering A, 370(1–2), 537–541.

    Article  Google Scholar 

  13. Göken, J., & Riehemann, W. (2004). Damping behaviour of AZ91 magnesium alloy with cracks. Materials Science and Engineering A, 370(1–2), 417–421.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Composite Materials Ltd. (Kirovgrad, Russia) for the kind assistance in sample production and machining.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riehemann, W., Finkelstein, A., Arlic, U., Husnullin, D. (2018). Damping Behavior of Aluminum Replicated Foam. In: Brebbia, C., Connor, J. (eds) Progress in Materials Science and Engineering. Innovation and Discovery in Russian Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-75340-9_5

Download citation

Publish with us

Policies and ethics