Skip to main content

White Matter Hyperintensities Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10670))

Included in the following conference series:

Abstract

In this paper, we propose a fast automatic method that segments white matter hyperintensities (WMH) in 3D brain MR images, using a fully convolutional network (FCN) and transfer learning. This FCN is the Visual Geometry Group neural network (VGG for short) pre-trained on ImageNet for natural image classification, and fine tuned with the training dataset of the MICCAI WMH Challenge. We consider three images for each slice of the volume to segment: the T1 slice, the FLAIR slice, and the result of a morphological operator that emphasizes small bright structures. These three 2D images are assembled to form a 2D color image, that inputs the FCN to obtain the 2D segmentation of the corresponding slice. We process all slices, and stack the results to form the 3D output segmentation. With such a technique, the segmentation of WMH on a 3D brain volume takes about 10 s including pre-processing. Our technique was ranked 6-th over 20 participants at the MICCAI WMH Challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wmh.isi.uu.nl.

References

  1. Caligiuri, M.E., Perrotta, P., Augimeri, A., Rocca, F., Quattrone, A., Cherubini, A.: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review. Neuroinformatics 13(3), 261–276 (2015)

    Article  Google Scholar 

  2. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE (1994)

    Google Scholar 

  4. García-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L.: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013)

    Article  Google Scholar 

  5. Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I.W., Sanchez, C.I., Litjens, G., de Leeuw, F.E., van Ginneken, B., Marchiori, E., Platel, B.: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci. Rep. 7, 5110 (2017)

    Article  Google Scholar 

  6. Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie, M., Guttmann, C.R.G., de Leeuw, F.-E., Tempany, C.M., van Ginneken, B., Fedorov, A., Abolmaesumi, P., Platel, B., Wells, W.M.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part III. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  7. Jack, C.R., O’Brien, P.C., Rettman, D.W., Shiung, M.M., Xu, Y., Muthupillai, R., Manduca, A., Avula, R., Erickson, B.J.: FLAIR histogram segmentation for measurement of leukoaraiosis volume. J. Magn. Reson. Imaging 14(6), 668–676 (2001)

    Article  Google Scholar 

  8. Jones, R.: Component trees for image filtering and segmentation. In: Coyle, E. (ed.) Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing, Mackinac Island (1997)

    Google Scholar 

  9. Khayati, R., Vafadust, M., Towhidkhah, F., Nabavi, M.: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput. Biol. Med. 38(3), 379–390 (2008)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Lazzara, G., Géraud, T., Levillain, R.: Planting, growing and pruning trees: Connected filters applied to document image analysis. In: Proceedings of the 11th IAPR International Workshop on Document Analysis Systems (DAS), Tours, France, pp. 36–40 (2014)

    Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  13. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  14. Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)

    Article  Google Scholar 

  15. Morel, B., Xu, Y., Virzi, A., Géraud, T., Adamsbaum, C., Bloch, I.: A challenging issue: detection of white matter hyperintensities on neonatal brain MRI. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 93–96 (2016)

    Google Scholar 

  16. Pantoni, L.: Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9(7), 689–701 (2010)

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  19. Salembier, P., Serra, J.: Flat zones filtering, connected operators and filters by reconstruction. IEEE Trans. Image Process. 3(8), 1153–1160 (1995)

    Article  Google Scholar 

  20. Salembier, P., Wilkinson, M.H.: Connected operators. IEEE Signal Process. Mag. 26(6), 136–157 (2009)

    Article  Google Scholar 

  21. Schwarz, C., Fletcher, E., DeCarli, C., Carmichael, O.: Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. Inf. Process. Med. Imaging 21, 239–251 (2009)

    Article  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  23. Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: Proceedings of the EURASIP 1st Workshop on Mathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, pp. 22–27, May 1993

    Google Scholar 

  24. Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., Lindley, R.I., O’Brien, J.T., Barkhof, F., Benavente, O.R., et al.: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12(8), 822–838 (2013)

    Article  Google Scholar 

  25. Xu, Y., Géraud, T., Bloch, I.: From neonatal to adult brain MR image segmentation in a few seconds using 3D-like fully convolutional network and transfer learning. In: Proceedings of the 23rd IEEE International Conference on Image Processing (ICIP), Beijing, China pp. 4417–4421, September 2017. http://www.lrde.epita.fr/~theo/papers/geraud.2017.icip.pdf

Download references

Acknowledgments

The authors want to thank the organizers of the White Matter Hyperintensities Segmentation Challenge at MICCAI 2017, and the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Géraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Géraud, T., Puybareau, É., Bloch, I., Chazalon, J. (2018). White Matter Hyperintensities Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics