Skip to main content

Risk-Constraint Scheduling of Storage and Renewable Energy Integrated Energy Hubs

  • Chapter
  • First Online:
Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs

Abstract

An energy hub has been lately introduced as a powerful model to optimize the cooperation among variety forms of energy. The energy hub provides output demands through converting, transmitting or storage process, feeding by various kinds of energy fuels as inputs of generating infrastructures. Input and output consist of different kinds of energy such as heat, power, gas, and hydrogen to promise the diversity of consumption side. In response to environmental concerns and increasing energy needs, the trend toward renewable distribution energy resources has been increased. In this chapter, the authors consider a renewable-based energy hub which contains wind turbine (WT), photovoltaic (PV) cells, energy storages, boiler, etc. Volatile nature of renewable energy resources makes new challenges to supply the demands. In this regard, an optimal stochastic short-term scheduling, considering the uncertainties of the renewable generations is presented. The stochastic formulation is led to design of optimal planning to increase not only total profit but also consumers’ satisfaction. A scenario-based technique is utilized to evaluate the uncertainties of the renewable sources. In order to decrease the number of sceneries, a proper scenario reduction method is applied on the problem. The influence of uncertainty factors such as solar irradiation and wind speed is investigated in the problem formulation. Moreover, in the scheduling model risk management problem is also considered. To confirm the effectiveness of the proposed method, it is applied on a proper test system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geidl M, Koeppel G, Favre-Perrod P, Klockl B, Andersson G, Frohlich K (2007) Energy hubs for the future. IEEE Power Energy Mag 5(1):24–30

    Article  Google Scholar 

  2. Hemmes K, Zachariah-Wolf J, Geidl M, Andersson G (2007) Towards multi-source multi-product energy systems. Int J Hydrogen Energy 32(10):1332–1338

    Article  Google Scholar 

  3. Parisio A, Del Vecchio C, Vaccaro A (2012) A robust optimization approach to energy hub management. Int J Electr Power Energy Syst 42(1):98–104

    Article  Google Scholar 

  4. Maroufmashat A, Elkamel A, Fowler M, Sattari S, Roshandel R, Hajimiragha A, Walker S, Entchev E (2015) Modeling and optimization of a network of energy hubs to improve economic and emission considerations. Energy 93:2546–2558

    Article  Google Scholar 

  5. La Scala M, Vaccaro A, Zobaa A (2014) A goal programming methodology for multiobjective optimization of distributed energy hubs operation. Appl Therm Eng 71(2):658–666

    Article  Google Scholar 

  6. Majidi M, Nojavan S, Zare K (2017) A cost-emission framework for hub energy system under demand response program. Energy 134: 157–166

    Article  Google Scholar 

  7. Roldán-Blay C, Escrivá-Escrivá G, Roldán-Porta C, Álvarez-Bel C (2017) An optimisation algorithm for distributed energy resources management in micro-scale energy hubs. Energy 132:126–135

    Article  Google Scholar 

  8. Rastegar M, Fotuhi-Firuzabad M, Lehtonen M (2015) Home load management in a residential energy hub. Electr Power Syst Res 119:322–328

    Article  Google Scholar 

  9. Sheikhi A, Rayati M, Bahrami S, Ranjbar AM, Sattari S (2015) A cloud computing framework on demand side management game in smart energy hubs. Int J Electr Power Energy Syst 64:1007–1016

    Article  Google Scholar 

  10. Sheikhi A, Bahrami S, Ranjbar AM (2015) An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy 89:490–499

    Article  Google Scholar 

  11. Vahid-Pakdel M, Nojavan S, Mohammadi-ivatloo B, Zare K (2017) Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Convers Manag 145:117–128

    Article  Google Scholar 

  12. Moghaddam IG, Saniei M, Mashhour E (2016) A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building. Energy 94:157–170

    Article  Google Scholar 

  13. Shariatkhah M-H, Haghifam M-R, Parsa-Moghaddam M, Siano P (2015) Modeling the reliability of multi-carrier energy systems considering dynamic behavior of thermal loads. Energy Build 103:375–383

    Article  Google Scholar 

  14. Orehounig K, Evins R, Dorer V (2015) Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Appl Energy 154:277–289

    Article  Google Scholar 

  15. Salimi M, Ghasemi H, Adelpour M, Vaez-ZAdeh S (2015) Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity. IET Gener Transm Distrib 9(8):695–707

    Article  Google Scholar 

  16. Dolatabadi A, Mohammadi-ivatloo B, Abapour M, Tohidi S (2017) Optimal stochastic design of wind integrated energy hub. IEEE Trans Ind Inf 99:1

    Google Scholar 

  17. Moeini-Aghtaie M, Dehghanian P, Fotuhi-Firuzabad M, Abbaspour A (2014) Multiagent genetic algorithm: an online probabilistic view on economic dispatch of energy hubs constrained by wind availability. IEEE Trans Sustain Energy 5(2):699–708

    Article  Google Scholar 

  18. Bozchalui MC, Hashmi SA, Hassen H, Cañizares CA, Bhattacharya K (2012) Optimal operation of residential energy hubs in smart grids. IEEE Trans Smart Grid 3(4):1755–1766

    Article  Google Scholar 

  19. Shahmohammadi A, Moradi-Dalvand M, Ghasemi H, Ghazizadeh M (2015) Optimal design of multicarrier energy systems considering reliability constraints. IEEE Trans Power Deliv 30(2):878–886

    Article  Google Scholar 

  20. Moeini-Aghtaie M, Farzin H, Fotuhi-Firuzabad M, Amrollahi R (2017) Generalized analytical approach to assess reliability of renewable-based energy hubs. IEEE Trans Power Syst 32(1):368–377

    Article  Google Scholar 

  21. Sharif A, Almansoori A, Fowler M, Elkamel A, Alrafea K (2014) Design of an energy hub based on natural gas and renewable energy sources. Int J Energy Res 38(3):363–373

    Article  Google Scholar 

  22. Conejo AJ, Carrión M, Morales JM (2010) Decision making under uncertainty in electricity markets, vol 153. Springer Science & Business Media, New York

    MATH  Google Scholar 

  23. Hosseini-Firouz M (2013) Optimal offering strategy considering the risk management for wind power producers in electricity market. Int J Electr Power Energy Syst 49:359–368

    Article  Google Scholar 

  24. Alipour M, Mohammadi-Ivatloo B, Zare K (2015) Stochastic scheduling of renewable and CHP-based microgrids. IEEE Trans Ind Inf 11(5):1049–1058

    Article  Google Scholar 

  25. Abbaspour M, Satkin M, Mohammadi-Ivatloo B, Lotfi FH, Noorollahi Y (2013) Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES). Renew Energy 51:53–59

    Article  Google Scholar 

  26. Ji W, Chee KC (2011) Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. Sol Energy 85(5):808–817

    Article  Google Scholar 

  27. Dolatabadi A, Mohammadi-Ivatloo B (2017) Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response. Appl Therm Eng 123:40–49

    Article  Google Scholar 

  28. The GAMS software website (2012)

    Google Scholar 

  29. Brooke A, David K, Meeraus A (1996) GAMS release 2.25; a user’s guide. GAMS Development Corporation, Washington, DC (EUA)

    Google Scholar 

  30. Alipour M, Zare K, Abapour M (2017) MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Trans Ind Inf. https://doi.org/10.1109/TII. 2017.2730440

  31. Honarmand M, Zakariazadeh A, Jadid S (2014) Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid. Energy Convers Manag 86:745–755

    Article  MATH  Google Scholar 

  32. Soroudi A, Keane A (2015) Risk averse energy hub management considering plug-in electric vehicles using information gap decision theory. In: Plug in electric vehicles in smart grids. Springer, Singapore, pp 107–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manijeh Alipour .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

10.1.1 Indices

ω :

Scenario index [1 : N ω ]

e :

Index of electrical storage unit

h :

Index of thermal storage unit

s :

Index of energy storage units

t :

Time index [1 : N t ]

10.1.2 Parameters

α :

Confidence level

\( {\eta}_h^B \) :

The efficiency of boiler unit

\( {\eta}_e^{\mathrm{CHP}}/{\eta}_h^{\mathrm{CHP}} \) :

The efficiency of electrical/thermal generation of CHP unit

η PV :

The efficiency of PV panel

\( {\lambda}_t^e/{\lambda}_t^g \) :

Electricity/gas price of the grid at tth hour

\( {E}_{\mathrm{min}}^s/{E}_{\mathrm{max}}^s \) :

Minimum/maximum stored energy of storage unit

\( {H}_{\mathrm{min}}^{\mathrm{CHP}}/{H}_{\mathrm{max}}^{\mathrm{CHP}} \) :

Minimum/maximum heat production of CHP unit

\( {H}_{\mathrm{min}}^B/{H}_{\mathrm{max}}^B \) :

Minimum/maximum heat production of boiler unit

\( {P}_{\mathrm{max}}^{\mathrm{WT}} \) :

Maximum output power of WT

\( {P}_{\mathrm{min}}^{\mathrm{CHP}}/{P}_{\mathrm{max}}^{\mathrm{CHP}} \) :

Minimum/maximum electrical power production of CHP unit

\( {P}_t^{\mathrm{electrical}}/{P}_t^{\mathrm{thermal}} \) :

Electrical/thermal demand of REH

R U/R D :

Ramp-up/down power CHP unit

S R :

The value of rated wind speed

S CI/S CO :

The value of cut-in/cut-out wind speed

10.1.3 Variables

ξ ω :

Auxiliary variable used for CVaR computing

\( {\upsilon}_t^{\mathrm{CHP}} \) :

Binary variable depicted on/off state of CHP unit

π ω :

Probability of ωth scenario

\( {E}_t^s \) :

Amount of stored energy in energy storage at tth hour and ωth scenario

\( {E}_{t,\omega}^{s,\mathrm{ch}}/{E}_{t,\omega}^{s,\mathrm{dis}} \) :

Charging/discharging of energy storage

\( {H}_{\omega, t}^B \) :

Thermal generation of boiler unit at tth hour and ωth scenario

\( {H}_{\omega, t}^{\mathrm{CHP}} \) :

Thermal generation of CHP unit at tth hour and ωth scenario

\( {I}_{\omega, t}^{\mathrm{PV}} \) :

Solar radiation

\( {P}_{\omega, t}^{\mathrm{PV}} \) :

Utilizing solar power

\( {P}_{\omega, t}^{\mathrm{WT}} \) :

Utilizing wind power

\( {P}_{\omega, t}^{\mathrm{CHP}} \) :

Power generation of CHP unit at tth hour and ωth scenario

\( {P}_{\omega, t}^{A,\mathrm{WT}} \) :

Available wind power at tth hour and ωth scenario

\( {P}_{\omega, t}^{g,\mathrm{grid}}/{P}_{\omega, t}^{e,\mathrm{grid}} \) :

Purchased gas/power from the grid at tth hour and ωth scenario

S ω, t :

Wind speed at tth hour and ωth scenario

\( {T}_t^{\mathrm{Out}} \) :

Environment temperature

\( {u}_{\mathrm{SU},t}^{\mathrm{CHP}}/{u}_{\mathrm{SD},t}^{\mathrm{CHP}} \) :

Binary variable depicting start-up/shutdown status of CHP unit at tth hour

VaR:

Value-at-risk (VaR)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aliasghari, P., Alipour, M., Jalali, M., Mohammadi-Ivatloo, B., Zare, K. (2018). Risk-Constraint Scheduling of Storage and Renewable Energy Integrated Energy Hubs. In: Mohammadi-Ivatloo, B., Jabari, F. (eds) Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs. Springer, Cham. https://doi.org/10.1007/978-3-319-75097-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75097-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75096-5

  • Online ISBN: 978-3-319-75097-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics