Skip to main content

Field-Matter Coupling and Two-Level Systems

  • Chapter
  • First Online:
  • 1689 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

With this chapter, we start the applications part of this book by considering the interaction between lasers and matter. Lasers have already been discussed in Chap. 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the literature this is frequently called semiclassical laser matter interaction [1]. We have, however, used the expression “semiclassics” already differently in Chap. 2.

  2. 2.

    Therefore, due to (3.11), the magnetic induction vanishes in dipole approximation.

  3. 3.

    Synonymously, some authors [3, 4] use the expression \(\varvec{A}\cdot \varvec{p}\) gauge.

  4. 4.

    For a charged particle in a plane electromagnetic wave, the magnetic part of the Lorentz force is smaller by a factor v / c than the electric one [6].

  5. 5.

    The gauge index will be mostly suppressed in the remainder of the book, as we will explicitly state which gauge is used.

  6. 6.

    The identities \(\arctan (x)=\arccos (1/\sqrt{1+x^2})\) and \(\arctan (x)=\arcsin (x/\sqrt{1+x^2})\) can be used to resolve the cosine and sine terms in (3.47) and (3.48).

  7. 7.

    This is an approximation and therefore the notion of exact solubility refers to the final equation and not the initial problem.

  8. 8.

    Note that \(2\cos (x/2)\sin (x/2)=\sin (x)\).

References

  1. A.D. Bandrauk, in Molecules in Laser Fields, ed. by A.D. Bandrauk (Dekker, New York, 1994), Chap. 1, pp. 1–69

    Google Scholar 

  2. B. Felsager, Geometry, Particles and Fields (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  3. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001)

    Book  MATH  Google Scholar 

  4. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Pearson Education, Harlow, 2003)

    Google Scholar 

  5. M. Göppert-Mayer, Ann. Phys. (Leipzig) 9, 273 (1931)

    Article  ADS  Google Scholar 

  6. J.D. Jackson, Klassische Elektrodynamik, 2nd edn. (Walter de Gruyter, Berlin, 1983)

    Google Scholar 

  7. D. Bauer, D.B. Milôsevíc, W. Becker, Phys. Rev. A 75, 23415 (2005)

    Article  Google Scholar 

  8. F.H.M. Faisal, Phys. Rev. A 75, 63412 (2007)

    Article  ADS  Google Scholar 

  9. Y.C. Han, L.B. Madsen, Phys. Rev. A 81, 63430 (2010)

    Article  ADS  Google Scholar 

  10. M. Baghery, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 118, 143202 (2017)

    Article  ADS  Google Scholar 

  11. L.B. Madsen, Phys. Rev. A 65, 53417 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. H.A. Kramers, Collected Scientific Papers (North Holland, Amsterdam, 1956)

    Google Scholar 

  13. W.C. Henneberger, Phys. Rev. Lett. 21, 838 (1968)

    Article  ADS  Google Scholar 

  14. F. Grossmann, P. Jung, T. Dittrich, P. Hänggi, Zeitschrift für Physik B 84, 315 (1991)

    Article  ADS  Google Scholar 

  15. J.C.A. Barata, W.F. Wreszinski, Phys. Rev. Lett. 84, 2112 (2000)

    Article  ADS  Google Scholar 

  16. S. Stenholm, in Quantum Dynamics of Simple Systems, ed. by G.L. Oppo, S.M. Barnett, E. Riis, M. Wilkinson (IOP, Bristol, 1996), p. 267

    MATH  Google Scholar 

  17. N. Rosen, C. Zener, Phys. Rev. 40, 502 (1932)

    Article  ADS  Google Scholar 

  18. L.D. Landau, Phys. Z. Soviet Union 2, 46 (1932)

    Google Scholar 

  19. C. Zener, Proc. Roy. Soc. (London) A 137, 696 (1932)

    Google Scholar 

  20. E.C.G. Stückelberg, Hel. Phys. Acta 5, 369 (1932)

    Google Scholar 

  21. E. Majorana, Nuovo Cimento 9, 43 (1932)

    Article  Google Scholar 

  22. D. Coker, in Computer Simulation in Chemical Physics, ed. by M.P. Allen, D.J. Tildesley (Kluwer, Amsterdam, 1993)

    Google Scholar 

  23. H.R. Reiss, Phys. Rev. A 63, 13409 (2000)

    Article  Google Scholar 

  24. S. Selstø, M. Førre, Phys. Rev. A 76, 23427 (2007)

    Article  ADS  Google Scholar 

  25. D.H. Kobe, E.C.T. Wen, J. Phys. A 15, 787 (1982)

    Article  ADS  Google Scholar 

  26. H. Haken, Licht und Materie Bd. 1: Elemente der Quantenoptik (BI Wissenschaftsverlag, Mannheim, 1989)

    Google Scholar 

  27. J.H. Shirley, Phys. Rev. 138, B979 (1965)

    Article  ADS  Google Scholar 

  28. B.M. Garraway, K.A. Suominen, Rep. Prog. Phys. 58, 365 (1995)

    Article  ADS  Google Scholar 

  29. M. Weissbluth, Photon-Atom Interactions (Academic Press, New York, 1989)

    Google Scholar 

  30. U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  31. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  32. J. von Neuman, E. Wigner, Phys. Z. 30, 467 (1929)

    Google Scholar 

  33. A.G. Fainshteyn, N.L. Manakov, L.P. Rapoport, J. Phys. B 11, 2561 (1978)

    Article  ADS  Google Scholar 

  34. T. Timberlake, L.E. Reichl, Phys. Rev. A 59, 2886 (1999)

    Article  ADS  Google Scholar 

  35. H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison Wesley, San Francisco, 2002)

    MATH  Google Scholar 

  36. D.J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, Sausalito, 2007)

    Google Scholar 

  37. R.C. Hilborn, Am. J. Phys. 50, 982 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Grossmann .

Appendices

3.A Generalized Parity Transformation

In the case of a symmetric static potential \(V(x)=V(-x)\) and in length gauge, with a sinusoidal laser potential of the form \(e\mathcal{E}_0x\sin (\omega t)\), the extended Hamiltonian \(\hat{\mathcal{H}}\) in (2.138) is invariant under the generalized parity transformation

$$\begin{aligned} \hat{\mathcal{P}}:\qquad x\rightarrow -x,\quad t\rightarrow t+\frac{T}{2}\;. \end{aligned}$$
(3.80)

The Floquet functions thus transform according to

$$\begin{aligned} \hat{\mathcal{P}}\psi _{\alpha ^{\prime }}(x,t)=\pm \psi _{\alpha ^{\prime }}(x,t)\;, \end{aligned}$$
(3.81)

i.e., they have either positive or negative generalized parity. With the help of (2.150) it follows that \(\psi _{\alpha ^{\prime }}(x,t),\psi _{\beta ^{\prime }}(x,t)\) have the same or different generalized parity, depending on \((\alpha -k)-(\beta -l)\) being even or odd.

As we will see in Chap. 5, exact crossings of the quasienergies as a function of external parameters are of utmost importance for the quantum dynamics of periodically driven systems. For stationary systems, the possibility of exact crossings has been studied in the heyday of quantum theory by von Neumann and Wigner [32]. These authors found that eigenvalues of eigenfunctions with different parity may approach each other arbitrarily closely and may thus cross exactly. This is in contrast to eigenvalues of the same parity, which always have to be at a finite distance, a fact which is sometimes referred to as the non-crossing rule. The corresponding behavior in the spectrum as a function of external parameters is called allowed, respectively avoided crossing. In the Floquet case, the Hamiltonian can also be represented by a Hermitian matrix, see e.g. (2.183), and therefore the same reasoning applies, with parity replaced by generalized parity.

For the investigations to be presented in Sect. 5.5.1 it is decisive if these exact crossings are singular events in parameter space or if they can occur by variation of just a single parameter. In [32] it has been shown that for Hermitian matrices (of finite dimension) with complex (real) elements, the variation of three (two) free parameters is necessary in order for two eigenvalues to cross. Using similar arguments, it can be shown that for a real Hermitian matrix with alternatingly empty off-diagonals (as it is e.g., the case for the Floquet matrix of the periodically driven, quartic, symmetric, bistable potential) the variation of a single parameter is enough to make two quasienergies cross.

In the case of avoided crossings an interesting behavior of the corresponding eigenfunctions can be observed. There is a continuous change in the structure in position space if one goes through the avoided crossing [33]. Pictorially this is very nicely represented in the example of the driven quantum well, depicted in Fig. 3.4, taken out of [34], where for reasons of better visualization the Husimi transform of the quasi-eigenfunctions as a function of action angle variables \((J,\varTheta )\) [35] is shown.

Fig. 3.4
figure 4

Avoided crossing of Floquet energies (here denoted by \(\varOmega _\alpha \)) as a function of field amplitude (upper panel) and associated change of character of the Floquet functions, corresponding to the two levels labelled by A and B in the driven quantum well (lower panels (af)); from [34]

3.B Pauli Spin Matrices and the Two-Level Density Matrix

The Pauli spin matrices

$$\begin{aligned} \varvec{\sigma }_x = \begin{pmatrix} 0 &{} 1 \\ 1 &{} 0 \end{pmatrix} ; \ \varvec{\sigma }_y = \begin{pmatrix} 0 &{} -\mathrm{i}\\ \mathrm{i}&{} 0 \end{pmatrix} ; \ \varvec{\sigma }_z = \begin{pmatrix} 1 &{} 0 \\ 0 &{} -1 \end{pmatrix}, \end{aligned}$$
(3.82)

together with the 2 \(\times \) 2 unit matrix, form a complete basis in the space of complex hermitian 2 \(\times \) 2 matrices. In their terms our Hamiltonian (3.45) reads

$$\begin{aligned} \mathbf{H}=\hbar \nu \varvec{\sigma }_x-\hbar \epsilon \varvec{\sigma }_z. \end{aligned}$$
(3.83)

Furthermore, a general density operator can be written as

$$\begin{aligned} \hat{\rho }=\frac{1}{2}\left( \hat{1}+\varvec{r}\cdot \varvec{\hat{\sigma }}\right) , \end{aligned}$$
(3.84)

with a vector \(\varvec{r}\) that is of unit length for all times in the case of pure state dynamics, and a vector-operator \(\varvec{\hat{\sigma }}\), composed of the Pauli operators. This then allows for a geometrical interpretation of two-level dynamics by going to the Feynman-Vernon-Hellwarth (or Bloch sphere) representation, discussed in the book by Tannor [36].

The pure state density matrix, in the case of a two-level system with energies \(E_1,E_2\), in the basis of the corresponding eigenstates is given by

$$\begin{aligned} \varvec{\rho }= \begin{pmatrix} |d_1|^2 &{} d_1d_2^*\exp \{-\mathrm{i}(E_1-E_2)t/\hbar \} \\ d_1^*d_2\exp \{\mathrm{i}(E_1-E_2)t/\hbar \} &{} |d_2|^2 \end{pmatrix}, \end{aligned}$$
(3.85)

with the populations of the different energy levels on the diagonal and where the off-diagonal elements are sometimes called coherences.

A frequently considered mixed state is the thermal density matrix at temperature T with only diagonal elements

$$\begin{aligned} \rho _{mn}=\frac{\mathrm {e}^{-\beta E_n}}{Q}\delta _{mn}, \end{aligned}$$
(3.86)

where \(\beta =1/(k_\mathrm{B}T)\) with Boltzmann constant \(k_\mathrm{B}\) and where \(Q=\sum _{n=1}^2\mathrm {e}^{-\beta E_n}\) is the partition function. An initial pure state evolves into a thermal mixed state by relaxation (due to coupling to an environment) which is governed by the time scale for population decay \(T_1\) and the dephasing or coherence decay time scale \(T_2\), which are related via

$$\begin{aligned} \frac{1}{T_2}=\frac{1}{2T_1}+\frac{1}{T_2^*}, \end{aligned}$$
(3.87)

with the pure dephasing time \(T_2^*\) [36].

3.C Two-Level System in an Incoherent Field

As the starting point of the perturbative treatment of a two-level system in an incoherent external field, we use the Schrödinger equation in the interaction representation (3.60) and (3.61) with the initial conditions \(d_1(0)=1\) and \(d_2(0)=0\). For very small perturbations, the coefficient \(d_1\) is assumed to remain at its initial value, leading to

$$\begin{aligned} \mathrm{i}\dot{d}_2= & {} \nu _{21}(t)\exp [\mathrm{i}\omega _{21}t]\;. \end{aligned}$$
(3.88)

This equation can be integrated immediately to yield

$$\begin{aligned} d_2(t)=-\mathrm{i}\int _0^{t}\mathrm{d}t'\nu _{21}(t')\exp [\mathrm{i}\omega _{21}t']\;, \end{aligned}$$
(3.89)

analogous to the first order iteration in (2.28). The field shall consist of a superposition of waves with uniformly distributed, statistically independent phases \(\phi _j\)

$$\begin{aligned} \varvec{\mathcal{E}}(t)=\frac{1}{2}\sum _{\omega _j>0}\varvec{\mathcal{E}}_j \exp [\mathrm{i}\phi _j-\mathrm{i}\omega _jt]+\mathrm{c.c.}\;. \end{aligned}$$
(3.90)

If we insert this into the equation above, we get

$$\begin{aligned} d_2(t)= & {} -\frac{\mathrm{i}}{2\hbar }\sum _{j}\varvec{\mathcal{E}}_j\cdot \varvec{\mu }_{21} \exp [\mathrm{i}\phi _j]\int _0^{t}\mathrm{d}t'\exp [\mathrm{i}(\omega _{21}-\omega _j)t'] \nonumber \\= & {} -\frac{\mathrm{i}}{2\hbar }\sum _{j}\varvec{\mathcal{E}}_j\cdot \varvec{\mu }_{21} \exp [\mathrm{i}\phi _j]S_j\;, \end{aligned}$$
(3.91)

where the definition

$$\begin{aligned} S_j=[\mathrm{i}(\omega _{21}-\omega _j)]^{-1} \left\{ \exp [\mathrm{i}(\omega _{21}-\omega _j)t]-1\right\} \end{aligned}$$
(3.92)

has been introduced. The occupation probability of the second level is then given by the double sum

$$\begin{aligned} |d_2(t)|^2=(2\hbar )^{-2}\sum _j\sum _{j'}\exp [\mathrm{i}(\phi _j-\phi _{j'})] \varvec{\mathcal{E}}_j\cdot \varvec{\mu }_{21} \varvec{\mathcal{E}}_{j'}\cdot \varvec{\mu }_{21}^{*} S_jS_{j'}^{*}\;. \end{aligned}$$
(3.93)

Averaging over the phases is now performed and denoted by \(<>\), yielding

$$\begin{aligned} <\exp [\mathrm{i}(\phi _j-\phi _{k})]> =\delta _{jk}\;. \end{aligned}$$
(3.94)

One of the sums in (3.93) therefore collapses and

$$\begin{aligned} <|d_2(t)|^2>=\left| \frac{\varvec{e}\cdot \varvec{\mu }_{21}}{\hbar }\right| ^2 \sum _j|\mathcal{E}_j|^2(\omega _{21}-\omega _j)^{-2} \sin ^{2}[(\omega _{21}-\omega _j)t/2] \end{aligned}$$
(3.95)

follows for identical polarization, \(\varvec{e},\) of the light waves.

Now we have to sum over the distribution of frequencies. To this end we consider the time derivative of the expression aboveFootnote 8

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}<|d_2(t)|^2>= \left| \frac{\varvec{e}\cdot \varvec{\mu }_{21}}{\sqrt{2}\hbar }\right| ^2 \sum _j|\mathcal{E}_j|^2(\omega _{21}-\omega _j)^{-1} \sin [(\omega _{21}-\omega _j)t]\;. \end{aligned}$$
(3.96)

With the definition of an energy density per angular frequency interval \(\rho (\omega _j)=\frac{1}{2}\varepsilon _0|\mathcal{E}_j|^2/\varDelta \omega _j\), assuming that the frequencies are distributed continuously, and replacing \(\rho (\omega _j)\) by its resonance value \(\rho (\omega _{21})\), due to

$$\begin{aligned} \int _{-\infty }^{\infty } \mathrm{d}\omega \sin (\omega t)/\omega =\pi \;, \end{aligned}$$
(3.97)

we get

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}<|d_2(t)|^2>= \frac{\pi }{\varepsilon _0} \left| \frac{\varvec{e}\cdot \varvec{\mu }_{21}}{\hbar }\right| ^2 \rho (\omega _{21})\;. \end{aligned}$$
(3.98)

The right hand side of this expression is a constant and therefore consistent with the assumptions made in the derivation of Planck’s radiation law in Chap. 1.

Comparing the equation above with (1.2) for \(N_1\)=1 and after switching from the angular to the linear frequency case [37]

$$\begin{aligned} B=\frac{2\pi ^2}{\varepsilon _0} \left| \frac{\varvec{e}\cdot \varvec{\mu }_{21}}{h}\right| ^2 \end{aligned}$$
(3.99)

is found for Einstein’s B coefficient.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grossmann, F. (2018). Field-Matter Coupling and Two-Level Systems. In: Theoretical Femtosecond Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-74542-8_3

Download citation

Publish with us

Policies and ethics