Skip to main content

A Short Introduction to Laser Physics

  • Chapter
  • First Online:
Theoretical Femtosecond Physics

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

To study the influence of light on the dynamics of an atom or a molecule experimentally, laser-light sources are used most frequently. This is due to the fact that laser light has well-defined and often tunable properties. The theory of the laser dates back to the 1950s and 1960s and by now is textbook material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to \(\mathrm{d}\nu =-c/\lambda ^2\mathrm{d}\lambda \), we get \(\rho (\lambda )\mathrm{d}\lambda =8\pi hc/\lambda ^5\mathrm{d}\lambda \left( \exp \left\{ \frac{hc}{kT\lambda }\right\} -1\right) ^{-1}\).

  2. 2.

    Note that in the previous section the rate was proportional to \(\rho \) and here it is proportional to the dimensionless variable n; we therefore have to use a different symbol for the coefficients.

  3. 3.

    Maser stands for “Microwave amplification by stimulated emission of radiation”.

  4. 4.

    Defined as the full width at half maximum (FWHM) of the intensity curve.

References

  1. H. Haken, Licht und Materie Bd. 1: Elemente der Quantenoptik (BI Wissenschaftsverlag, Mannheim, 1989)

    Google Scholar 

  2. H. Haken, Licht und Materie Bd. 2: Laser (BI Wissenschaftsverlag, Mannheim, 1994)

    Google Scholar 

  3. K. Shimoda, Introduction to Laser Physics (Springer, Berlin, 1984)

    Book  Google Scholar 

  4. J.P. Gordon, H.J. Zeiger, C.H. Townes, Phys. Rev. 95, 282 (1954)

    Article  ADS  Google Scholar 

  5. T.H. Maiman, Phys. Rev. Lett. 4, 564 (1960)

    Article  ADS  Google Scholar 

  6. W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1996)

    Book  Google Scholar 

  7. F. Westermann, Laser (Teubner, 1976)

    Google Scholar 

  8. P. Luchini, H. Motz, Undulators and free-electron lasers (Clarendon Press, 1990)

    Google Scholar 

  9. T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Opt. Lett. 24, 881 (1999)

    Article  ADS  Google Scholar 

  10. M. Wollenhaupt, A. Assion, T. Baumert, in Springer Handbook of Lasers and Optics, ed. by F. Träger (Springer, Berlin, 2007), chap. 12, pp. 937–983

    Google Scholar 

  11. D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Opt. Lett. 24, 631 (1999)

    Article  ADS  Google Scholar 

  12. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Press, Boston, 2000)

    Book  Google Scholar 

  13. K. Hirai, E.J. Heller, P. Gaspard, J. Chem. Phys. 103, 5970 (1995)

    Article  ADS  Google Scholar 

  14. C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

  15. A. Einstein, Ann. Phys. (Leipzig) 17, 132 (1905)

    Article  ADS  Google Scholar 

  16. K. Hentschel, Physics and Philosophy (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Grossmann .

1.A Some Gaussian Integrals

1.A Some Gaussian Integrals

Throughout this book, Gaussian integrals will be encountered. For complex valued parameters a and b with \(\mathrm{Re}\,{a}\ge 0\), the following formulae hold:

$$\begin{aligned} \int _{-\infty }^{\infty }\mathrm{d}x\, \exp \{-a x^2\}= & {} \sqrt{\frac{\pi }{a}}, \end{aligned}$$
(1.29)
$$\begin{aligned} \int _{-\infty }^{\infty }\mathrm{d}x\, x \exp \{-a x^2\}= & {} 0, \end{aligned}$$
(1.30)
$$\begin{aligned} \int _{-\infty }^{\infty }\mathrm{d}x\, x^{2k}\exp \{-a x^2\}= & {} 1\cdot 3\cdots (2k-1)\left( \frac{1}{2a}\right) ^k\sqrt{\frac{\pi }{a}}, \end{aligned}$$
(1.31)
$$\begin{aligned} \int _{-\infty }^{\infty }\mathrm{d}x\, \exp \{-a x^2+b x\}= & {} \sqrt{\frac{\pi }{a}} \exp \left\{ \frac{b^2}{4a}\right\} , \end{aligned}$$
(1.32)
$$\begin{aligned} \int _{-\infty }^{\infty }\mathrm{d}x\, x \exp \{-a x^2+b x\}= & {} \left( \frac{b}{2a}\right) \sqrt{\frac{\pi }{a}} \exp \left\{ \frac{b^2}{4a}\right\} , \end{aligned}$$
(1.33)
$$\begin{aligned} \int _{-\infty }^{\infty }\mathrm{d}x\, x^2 \exp \{-a x^2+b x\}= & {} \left( \frac{1}{2a}\right) \left( 1+\frac{b^2}{2a}\right) \sqrt{\frac{\pi }{a}} \exp \left\{ \frac{b^2}{4a}\right\} . \end{aligned}$$
(1.34)

A generalization of one of the expressions above to the case of a d-dimensional integral that is helpful is

$$\begin{aligned} \int \mathrm{d}^dx\exp \{-\mathbf {x}\cdot \mathbf{A}\mathbf {x}+\mathbf {b}\cdot \mathbf {x}\}= \sqrt{\frac{\pi ^d}{\det \mathbf{A}}} \exp \left\{ \frac{1}{4}\mathbf {b}\cdot \mathbf{A}^{-1}\mathbf {b}\right\} , \end{aligned}$$
(1.35)

valid for positive definite symmetric matrices \(\mathbf A\). Like in the 1D case, it can be proven by using a “completion of the square” argument. Furthermore, the convention that non-indication of the boundaries implies integration over the whole range of the independent variables has been used.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grossmann, F. (2018). A Short Introduction to Laser Physics. In: Theoretical Femtosecond Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-74542-8_1

Download citation

Publish with us

Policies and ethics