Skip to main content

Entropic Method for 3D Point Cloud Simplification

  • Conference paper
  • First Online:
Innovations in Smart Cities and Applications (SCAMS 2017)

Abstract

To represent the surface of complex objects, the samples resulting from their digitization can contain a very large number of points. Simplification techniques analyse the relevance of the data. These simplification techniques provide models with fewer points than the original ones. Whereas reconstruction of a surface, with simplified point cloud, must be close to the original. In this article, we develop a method of simplification based on the concept of entropy, which is a mathematical function that intuitively corresponds to the amount of information this allows considering only relevant points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauly, M., Gross, M., Kobbelt, L.: Efficient simplification of point-sampled surfaces. In: Proceedings of IEEE Visualization Conference (2002)

    Google Scholar 

  2. Wu, J., Kobbelt, L.P.: Optimized sub-sampling of point sets for surface splatting. In: Proceedings of Eurographics (2004)

    Google Scholar 

  3. Ohtake, Y., Belyaev, A.G., Seidel, H.-P.: An integrating approach to meshing scattered point data. In: Proceedings of Symposium on Solid and Physical Modeling (2005)

    Google Scholar 

  4. Linsen, L.: Point Cloud Representation. Universitat Karlsruhe, Germany (2001)

    Google Scholar 

  5. Dey, T.K., Giesen, J., Hudson, J.: Decimating samples for mesh simplification. In: Proceedings of Canadian Conference on Computational Geometry (2001)

    Google Scholar 

  6. Amenta, N., Choi, S., Dey, T., Leekha, N.; A simple algorithm for homeomorphic surface reconstruction. In: Proceedings of Symposium on Computational Geometry (2000)

    Google Scholar 

  7. Dey, T.K., Giesen, J., Hudson, J.: Sample shuffling for quality hierarchic surface meshing. In: Proceedings of 10th International Meshing Roundatble Conference (2001)

    Google Scholar 

  8. Alexa, M., Beh, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.: Point set surfaces. In: Proceedings of IEEE Visualization Conference (2001)

    Google Scholar 

  9. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH (1997)

    Google Scholar 

  10. Allègre, R., Chaine, R., Akkouche, S.: Convection-driven dynamic surface reconstruction. In: Proceedings of Shape Modeling International, IEEE Computer Society Press (2005)

    Google Scholar 

  11. Boissonnat, J.-D., Cazals, F.: Coarse-to-fine surface simplification with geometric guarantees. In: Proceedings of Eurographics (2001)

    Google Scholar 

  12. Boissonnat, J., Oudot, S.: Provably good surface sampling and approximation. In: SGP 2003 Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Aachen, Germany (2003)

    Google Scholar 

  13. Boissonnat, J.-D., Oudot, S.: An effective condition for sampling surfaces with guarantees. In: SM 2004 Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, Genoa, Italy (2004)

    Google Scholar 

  14. Boissonnat, J.-D., Oudot, S.: Provably good sampling and meshing of surfaces. Graph. Models Solid Model. Theory Appl. 67(5), 405–451 (2005)

    Article  MATH  Google Scholar 

  15. Chew, L.P.: Guaranteed-quality mesh generation for curved surfaces. In: Proceedings of Symposium on Computational Geometry, San Diego, California, USA (1993)

    Google Scholar 

  16. Adamson, A., Alexa, M.: Approximating and intersecting surfaces from points. In: Proceedings of Symposium on Geometry Processing (2003)

    Google Scholar 

  17. Pauly, M., Gross, M.: Spectral processing of point-sampled geometry. In: SIGGRAPH 2001 Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA (2001)

    Google Scholar 

  18. Witkin, A.P., Heckbert, P.S.: Using particles to sample and control implicit surfaces. In: SIGGRAPH 1994 Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA (1994)

    Google Scholar 

  19. Wang, J., Li, X., Ni, J.: Probability density function estimation based on representative data samples. In: Communication Technology and Application (ICCTA 2011), IET International Conference, Beijing, China (2011)

    Google Scholar 

  20. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  21. Parzen, E.: On estimation of a probability density function and modes. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 832–837 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  23. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, Published in Monographs on Statistics and Applied Probability. Chapman and Hall press, London (1986)

    Google Scholar 

  24. Muller, H., Petersen, A.: Density Estimation Including Examples. Wiley StatsRef: Statistics Reference Online, pp. 1–12 (2016)

    Google Scholar 

  25. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  26. Mahdaoui, A., Bouazi, A., Hsaini, A.M., Sbai, E.: Comparative study of combinatorial 3D reconstruction algorithms. Int. J. Eng. Trends Technol. 48(5), 247–251 (2017)

    Article  Google Scholar 

  27. Marhraoui Hsaini, A., Bouazi, A., Mahdaoui, A., Sbai, E.H.: Reconstruction and adjustment of surfaces from a 3-D point cloud. Int. J. Comput. Trends Technol. (IJCTT) 37(2), 105–109 (2016)

    Article  Google Scholar 

  28. Guéziec, A.: Locally toleranced surface simplification. IEEE Trans. Vis. Comput. Graph. 5(2), 168–189 (1999)

    Article  Google Scholar 

  29. Randolph, E.B.: PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, La Jolla, California 92093-0112 (2016)

    Google Scholar 

Download references

Acknowledgments

The Max Planck, Atene and Tennis shoe models used in this paper are the courtesy of AIM@SHAPE shape repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaaziz Mahdaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahdaoui, A., Bouazi, A., Marhraoui Hsaini, A., Sbai, E.H. (2018). Entropic Method for 3D Point Cloud Simplification. In: Ben Ahmed, M., Boudhir, A. (eds) Innovations in Smart Cities and Applications. SCAMS 2017. Lecture Notes in Networks and Systems, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-74500-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74500-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74499-5

  • Online ISBN: 978-3-319-74500-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics