Skip to main content

Coral Reefs in Crisis: The Reliability of Deep-Time Food Web Reconstructions as Analogs for the Present

  • Chapter
  • First Online:
Marine Conservation Paleobiology

Part of the book series: Topics in Geobiology ((TGBI,volume 47))

Abstract

Ongoing anthropogenic alterations of the biosphere have shifted emphasis in conservation biology from individual species to entire ecosystems. Modern measures of ecosystem change, however, lack the extended temporal scales necessary to forecast future change under increasingly stressful environmental conditions. Accordingly, the assessment and reconstruction of ecosystem dynamics during previous intervals of environmental stress and climate change in deep time has garnered increasing attention. The nature of the fossil record, though, raises questions about the difficulty of reconstructing paleocommunity and paleoecosystem-level dynamics. In this study, we assess the reliability of such reconstructions by simulating the fossilization of a highly threatened and disturbed modern ecosystem, a Caribbean coral reef. Using a high-resolution coral reef food web from Jamaica, we compare system structures of the modern and simulated fossil reefs, including guild richness and evenness, trophic level distribution, predator dietary breadth, food chain lengths, and modularity. Results indicate that despite the loss of species, guilds, and trophospecies interactions, particularly zooplankton and other soft-bodied organisms, the overall guild diversity, structure, and modularity of the reef ecosystem remained intact. These results have important implications for the integrity of fossil food web studies and coral reef conservation, demonstrating that fossil reef communities can be used to understand reef community dynamics during past regimes of environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.C. of Excellence Coral Reef Studies (2016) Coral Bleaching Taskforce documents most severe bleaching on record. http://www.coralcoe.org.au/media-releases/coral-bleaching-taskforce-documents-most-severe-bleaching-on-record

  • Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, Mason BM, Nebuchina Y, Ninokawa A, Pongratz J, Ricke KL et al (2016) Reversal of ocean acidification enhances net coral reef calcification. Nature 531(7594):362

    Article  Google Scholar 

  • Andres N, Witman J (1995) Trends in community structure on a Jamaican reef. Oceanogr Lit Rev 10(42):889

    Google Scholar 

  • Angielczyk KD, Roopnarine PD, Wang SC (2005) Modeling the role of primary productivity disruption in end-permian extinctions, Karoo Basin, South Africa. The nonmarine Permian. N M Mus Nat Hist Sci Bull 30:16–23

    Google Scholar 

  • Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst 38:129–154

    Article  Google Scholar 

  • Bambach RK, Bush AM, Erwin DH (2007) Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50(1):1

    Article  Google Scholar 

  • Bascompte J, Melián CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci U S A 102(15):5443

    Article  Google Scholar 

  • Bastian M, Heymann S, Jacomy M et al (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM 8:361

    Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486(7401):52

    Article  Google Scholar 

  • Becker BH, Beissinger SR (2006) Centennial decline in the trophic level of an endangered seabird after fisheries decline. Conserv Biol 20(2):470

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6(4):281

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827

    Article  Google Scholar 

  • Blondel V, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theor Exp 2008:10008

    Article  Google Scholar 

  • Brandl SJ, Bellwood DR (2014) Individual-based analyses reveal limited functional overlap in a coral reef fish community. J Anim Ecol 83(3):661

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA et al (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59

    Article  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321(5888):560

    Article  Google Scholar 

  • Cramer KL, Leonard-Pingel JS, Rodríguez F, Jackson JB (2015) Molluscan subfossil assemblages reveal the long-term deterioration of coral reef environments in Caribbean Panama. Mar Pollut Bull 96(1):176

    Article  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109(44):17995

    Article  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci U S A 99(20):12917

    Article  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5(4):558

    Article  Google Scholar 

  • Dunne JA, Brose U, Williams RJ, Martinez ND (2005) Modeling food web dynamics: complexity-stability implications. In: Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford, pp 117–129

    Chapter  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND, Wood RA, Erwin DH (2008) Compilation and network analyses of Cambrian food webs. PLoS Biol 6(4):e102

    Article  Google Scholar 

  • Dunne JA, Labandeira CC, Williams RJ (2014) Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc R Soc Lond B: Biol Sci 281(1782):20133280

    Article  Google Scholar 

  • FishBase (2016) (World Wide Web electronic publication). www.fishbase.org

  • Franklin JF (1993) Preserving biodiversity: species, ecosystems, or landscapes? Ecol Appl 3(2):202

    Article  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301(5635):958

    Article  Google Scholar 

  • Greenstein BJ, Pandolfi JM (1997) Preservation of community structure in modern reef coral life and death assemblages of the Florida Keys: implications for the Quaternary fossil record of coral reefs. Bull Mar Sci 61(2):431

    Google Scholar 

  • Guillemot N, Kulbicki M, Chabanet P, Vigliola L (2011) Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage. PloS One 6(10):e26735

    Article  Google Scholar 

  • Guimerá R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895

    Article  Google Scholar 

  • Guimerá R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech Theor Exp 2005(02):P02001

    Article  Google Scholar 

  • Guimerà R, Sales-Pardo M, Amaral LAN (2007) Module identification in bipartite and directed networks. Phys Rev E 76(3):036102

    Google Scholar 

  • Hardt MJ (2009) Lessons from the past: the collapse of Jamaican coral reefs. Fish Fish 10(2):143

    Article  Google Scholar 

  • Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S, Lindberg DR, Liow LH, Lockwood R, McClain CR, McGuire JL et al (2012) Extinctions in ancient and modern seas. Trends Ecol Evol 27(11):608

    Article  Google Scholar 

  • Hewitt JE, Ellis JI, Thrush SF (2016) Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob Chang Biol 22(8):2665–2675

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265(5178):1547

    Article  Google Scholar 

  • Idjadi J, Haring R, Precht W (2010) Recovery of the sea urchin Diadema antillarum promotes scleractinian coral growth and survivorship on shallow Jamaican reefs. Mar Ecol Prog Ser 403:91

    Article  Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):629

    Article  Google Scholar 

  • Joachimski MM, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40(3):195

    Article  Google Scholar 

  • Jones WC (1984) Spicule dimensions as taxonomic criteria in the identification of haplosclerid sponges from the shores of Anglesey. Zool J Linnean Soc 80(2–3):239

    Article  Google Scholar 

  • Kidwell SM (2001) Preservation of species abundance in marine death assemblages. Science 294(5544):1091

    Article  Google Scholar 

  • Kidwell SM, Bosence DWJ (1991) Taphonomy: releasing the data locked in the fossil record. In: Taphonomy and time-averaging of marine shelly faunas. Plenum, New York, pp 115–209

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118

    Article  Google Scholar 

  • Knowlton N (2004) Multiple “stable” states and the conservation of marine ecosystems. Prog. Oceanogr. 60(2):387

    Article  Google Scholar 

  • Knowlton N, Jackson JB (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6(2):e54

    Article  Google Scholar 

  • Kondoh M (2008) Building trophic modules into a persistent food web. Proc Natl Acad Sci U S A 105(43):16631

    Article  Google Scholar 

  • Leighton LR (2002) Inferring predation intensity in the marine fossil record. Paleobiology 28(03):328

    Article  Google Scholar 

  • Lessios H (2016) The Great Diadema antillarum Die-Off: 30 Years Later. Annu Rev Mar Sci 8:267

    Article  Google Scholar 

  • Lessios HA, Robertson D, Cubit J (1984) Spread of Diadema mass mortality through the Caribbean. Science 226(4672):335

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JB (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312(5781):1806

    Article  Google Scholar 

  • Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27(1):19

    Article  Google Scholar 

  • Martinez ND (1992) Constant connectance in community food webs. Am Nat 139:1208–1218

    Article  Google Scholar 

  • May RM (1973) Stability and complexity in model ecosystems, vol 6. Princeton University Press, Princeton

    Google Scholar 

  • May RM (1983) Ecology: the structure of food webs. Nature 301:566

    Article  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405(6783):228

    Article  Google Scholar 

  • McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395(6704):794

    Article  Google Scholar 

  • McClanahan TR (2002) The near future of coral reefs. Environ Conserv 29(04):460

    Google Scholar 

  • Meffe G, Nielsen L, Knight RL, Schenborn D (2012) Ecosystem management: adaptive, community-based conservation. Island Press, Washington

    Google Scholar 

  • Micheli F, Halpern BS (2005) Low functional redundancy in coastal marine assemblages. Ecol Lett 8(4):391

    Article  Google Scholar 

  • Mitchell JS, Roopnarine PD, Angielczyk KD (2012) Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc Natl Acad Sci U S A 109(46):18857

    Article  Google Scholar 

  • Mora C (2008) A clear human footprint in the coral reefs of the Caribbean. Proc R Soc Lond B: Biol Sci 275(1636):767

    Article  Google Scholar 

  • Mumby PJ, Hedley JD, Zychaluk K, Harborne AR, Blackwell PG (2006) Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol Model 196(1):131

    Article  Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN et al (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757):98

    Article  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450(7166):98

    Article  Google Scholar 

  • Nash KL, Graham NA, Jennings S, Wilson SK, Bellwood DR (2016) Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J Appl Ecol 53:646–655

    Article  Google Scholar 

  • Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133

    Google Scholar 

  • Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci U S A 103(23):8577

    Article  Google Scholar 

  • Nyström M, Folke C, Moberg F (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15(10):413

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14(12):483

    Article  Google Scholar 

  • Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49(3):667

    Article  Google Scholar 

  • Pandolfi JM, Jackson JB (2006) Ecological persistence interrupted in Caribbean coral reefs. Ecol Lett 9(7):818

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury R et al (2005) Are US coral reefs on the slippery slope to slime? Science 307(5716):1725

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. Springer, New York

    Book  Google Scholar 

  • Pimm SL, Kitching R (1987) The determinants of food chain lengths. Oikos 50:302–307

    Article  Google Scholar 

  • Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350(6320):669

    Article  Google Scholar 

  • Post DM (2002) The long and short of food-chain length. Trends Ecol Evol 17(6):269

    Article  Google Scholar 

  • Reef Environmental Education Foundation Volunteer Survey Project Database (2011) (World Wide Web electronic publication). www.REEF.org

  • Romanuk TN, Hayward A, Hutchings JA (2011) Trophic level scales positively with body size in fishes. Glob Ecol Biogeogr 20(2):231

    Article  Google Scholar 

  • Roopnarine PD (2006) Extinction cascades and catastrophe in ancient food webs. Paleobiology 32(01):1

    Article  Google Scholar 

  • Roopnarine PD (2009) Conservation paleobiology. Paleontological society papers, vol 15, GP. Dietl, KW. Flessa (eds). The Paleontological Society, Tokyo pp 195–220

    Google Scholar 

  • Roopnarine PD (2009) Ecological modeling of paleocommunity food webs. Paleontol Soc Pap 15:196

    Google Scholar 

  • Roopnarine PD (2014) Humans are apex predators. Proc Natl Acad Sci U S A 111(9):E796

    Article  Google Scholar 

  • Roopnarine PD, Angielczyk KD (2015) Community stability and selective extinction during the Permian-Triassic mass extinction. Science 350(6256):90

    Article  Google Scholar 

  • Roopnarine P, Hertog R (2012) Data from: detailed food web networks of three greater antillean coral reef systems: the Cayman Islands, Cuba, and Jamaica. doi:10.5061/dryad.c213h. http://dx.doi.org/10.5061/dryad.c213h

  • Roopnarine PD, Hertog R (2012) Detailed food web networks of three greater Antillean coral reef systems: the Cayman Islands, Cuba, and Jamaica. Dataset Papers in Science 2013

    Google Scholar 

  • Roopnarine PD, Angielczyk KD, Wang SC, Hertog R (2007) Trophic network models explain instability of early triassic terrestrial communities. Proc R Soc Lond B: Biol Sci 274(1622):2077

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong C, Wallace DW, Tilbrook B et al (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367

    Article  Google Scholar 

  • Schwartz MW, Brigham C, Hoeksema J, Lyons K, Mills M, Van Mantgem P (2000) Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122(3):297

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413(6856):591

    Article  Google Scholar 

  • Seddon AW, Mackay AW, Baker AG, Birks HJB, Breman E, Buck CE, Ellis EC, Froyd CA, Gill JL, Gillson L et al (2014) Looking forward through the past: identification of 50 priority research questions in palaeoecology. J Ecol 102(1):256

    Article  Google Scholar 

  • Sepkoski JJ Jr (2002) A compendium of fossil marine animal genera. Bull Am Paleontol 363(16):1–560

    Google Scholar 

  • Sergio F, Newton I, Marchesi L (2005) Conservation: top predators and biodiversity. Nature 436(7048):192

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 183:688

    Article  Google Scholar 

  • Vermeij GJ, Leighton LR (2003) Does global diversity mean anything? Paleobiology 29(01):3

    Article  Google Scholar 

  • Villeger S, Novack-Gottshall PM, Mouillot D (2011) The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecol Lett 14(6), 561

    Article  Google Scholar 

  • Veron J, Hoegh-Guldberg O, Lenton T, Lough J, Obura D, Pearce-Kelly P, Sheppard C, Spalding M, Stafford-Smith M, Rogers A (2009) The coral reef crisis: The critical importance of < 350 ppm CO2. Mar Pollut Bull 58(10):1428

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389

    Article  Google Scholar 

  • Williams RJ (2010) Simple MaxEnt models explain food web degree distributions. Theor Ecol 3(1):45

    Article  Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404(6774):180

    Article  Google Scholar 

  • Williams RJ, Martinez ND (2004) Limits to trophic levels and omnivory in complex food webs: theory and data. Am Nat 163(3):458

    Article  Google Scholar 

  • Wood R (1998) The ecological evolution of reefs. Annu Rev Ecol Syst 29:179–206

    Article  Google Scholar 

  • Yodzis P (1984) Energy flow and the vertical structure of real ecosystems. Oecologia 65(1):86

    Article  Google Scholar 

  • Yodzis P (1989) Introduction to theoretical ecology. Harper & Row, New York

    Google Scholar 

Download references

Acknowledgements

We wish to thank Courtney Chin, Chrissy Garcia, and Rhiannon Roopnarine for the food chain illustrations and other graphical assistance. We also thank the CAS Paleoecology Discussion Group, including Allen Weik, for many useful discussions which contributed to this chapter. Finally, thanks to Kenneth Angielczyk and Carol Tang for asking difficult questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Roopnarine .

Editor information

Editors and Affiliations

Appendices

Appendix 1

1.1 Hypergeometric Variance

The hypergeometric distribution describes the probability given a population with a featured subset of observations, and a sample from the population, that a random selection of individuals from the population will include a certain fraction of the sample comprising individuals with the featured characteristic. In this case, the population consists of 728 species (N), of which 433 are featured as fossilized (K). A sample is the richness of a trophospecies (n), of which a subset are observed as fossilized (k). The expected fossilization or hypergeometric mean value is

$$\displaystyle \begin{aligned} \mathtt{E}(\hat{k}) = n \frac{K}{N} \end{aligned} $$
(9)

The variance of the expectation is given as

$$\displaystyle \begin{aligned} \sigma^{2}(k) = n \frac{K}{N} \frac{N-K}{N} \frac{N-n}{N-1} \end{aligned} $$
(10)

This value grows initially as n because the number of unique ways in which k objects may be selected also grows. The value declines, however, as n → N (Fig. 12).

Fig. 12
figure 12

Hypergeometric variance given a total population of 728 species, and trophospecies of increasing size

Appendix 2

See Table 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roopnarine, P.D., Dineen, A.A. (2018). Coral Reefs in Crisis: The Reliability of Deep-Time Food Web Reconstructions as Analogs for the Present. In: Tyler, C., Schneider, C. (eds) Marine Conservation Paleobiology. Topics in Geobiology, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-73795-9_6

Download citation

Publish with us

Policies and ethics