Skip to main content

Abnormalities in Calcium Homeostasis

  • Chapter
  • First Online:
Pediatric Endocrinology

Abstract

Calcium plays an important role in a number of physiological processes as diverse as bone formation and turnover, neuronal cell excitability, muscle contractility, and blood clotting. Significant shifts in serum calcium concentration have adverse effects on these physiological functions. In children, maintenance of adequate calcium balance is particularly important since bone deposition and growth are closely linked to the availability of calcium. Higher organisms have developed mechanisms to regulate the extracellular concentration of calcium, normally affected by intermittent changes in calcium absorption in the gut, continuous mineral bone turnover, and calcium losses in the urine. Extracellular calcium levels are set within a very narrow range by the concerted action of several regulatory “calciotropic” hormones on calcium handling in the gastrointestinal tract, bone, and kidney. The abnormal function of calciotropic hormones or the failure of any of these organs to handle calcium properly can cause either hypo-or hypercalcemia. Treatment is directed at restoring normal calcium levels by either enhancing calcium availability or promoting its clearance from the extracellular compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diaz R, Fuleihan GE, Brown EM. Parathyroid hormone and polyhormones: production and export. In: Fray JCS, editor. Handbook of physiology. New York: Oxford University Press; 2000. p. 607–62.

    Google Scholar 

  2. Juppner H, Potts JT. The roles of parathyroid hormone and parathyroid hormone-related peptide in calcium metabolism and bone biology: their biological actions and receptors. In: Fray JCS, editor. Handbook of physiology. New York: Oxford University Press; 2000. p. 663–98.

    Google Scholar 

  3. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–97.

    Article  CAS  PubMed  Google Scholar 

  4. Slatopolsky E, Dusso A, Brown AJ. The role of phosphorus in the development of secondary hyperparathyroidism and parathyroid cell proliferation in chronic renal failure. Am J Med Sci. 1999;317(6):370–6.

    Article  CAS  PubMed  Google Scholar 

  5. Rubin DA, et al. A G protein-coupled receptor from zebrafish is activated by human parathyroid hormone and not by human or teleost parathyroid hormone-related peptide. Implications for the evolutionary conservation of calcium-regulating peptide hormones. J Biol Chem. 1999;274(33):23035–42.

    Article  CAS  PubMed  Google Scholar 

  6. Suva W, Winslow GA, Wettenhall RE, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987;237(4817):893–6.

    Article  CAS  PubMed  Google Scholar 

  7. Kronenberg HM, Karaplis AC, Lanske B. Role of parathyroid hormone-related protein in skeletal development. Ann N Y Acad Sci. 1996;785:119–23.

    Article  CAS  PubMed  Google Scholar 

  8. Kovacs CS, et al. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci U S A. 1996;93(26):15233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bikle D, Adams J, Christakos S. Vitamin D: production, metabolism, mechanism of action, and clinical requirements. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 141–9.

    Chapter  Google Scholar 

  10. Shimada T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuss M, et al. Calcium and vitamin D metabolism in granulomatous diseases. Clin Rheumatol. 1992;11(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  12. Friedman PA. Calcium transport in the kidney. Curr Opin Nephrol Hypertens. 1999;8(5):589–95.

    Article  CAS  PubMed  Google Scholar 

  13. Martin TJ, Moseley JM. Calcitonin. In: DeGroot LJ, Jameson JL, editors. Endocrinology. Philadelphia, PA: WB Saunders; 2001. p. 999–1008.

    Google Scholar 

  14. Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium and lactation. Endocr Rev. 1997;18:832–72.

    CAS  PubMed  Google Scholar 

  15. Carpenter TO. Disorders in mineral metabolism in childhood. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 349–53.

    Chapter  Google Scholar 

  16. Thakker RV. The molecular genetics of hypoparathyroidism. In: Bilezekian JP, Levine MA, Marcus R, editors. The parathyroids. San Diego, CA: Academic; 2001. p. 779–90.

    Chapter  Google Scholar 

  17. Tomar N, Bora H, Singh R, et al. Presence and significance of a R110W mutation in the DNA-binding domain of GCM2 gene in patients with isolated hypoparathyroidism and their family members. Eur J Endocrinol. 2010;162(2):407–21.

    Article  CAS  PubMed  Google Scholar 

  18. Arnold A, et al. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Endocrinol Investig. 2013;36(11):1121–7.

    Article  Google Scholar 

  19. Yesiltepe Mutiu G, et al. A novel de novo GATA binding protein 3 mutation in a Turkish boy with hypoparathyroidism, deafness, and renal dysplasia syndrome. J Clin Res Pediatr Endocrinol. 2015;7(4):344–8.

    Article  Google Scholar 

  20. Carey AH, et al. Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet. 1992;51(5):964–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Parvari R, et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet. 2002;32(3):448–52.

    Article  CAS  PubMed  Google Scholar 

  22. Thakker RV. Molecular genetics of mineral metabolic disorders. J Inherit Metab Dis. 1992;15(4):592–609.

    Article  CAS  PubMed  Google Scholar 

  23. Whyte MP. Autoimmune hypoparathyroidism. In: Bilezekian JP, Levine MA, Marcus R, editors. The parathyroids. San Diego, CA: Academic; 2001. p. 791–806.

    Chapter  Google Scholar 

  24. Bettinelli A, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: bartter and Gitelman syndromes. J Pediatr. 1992;120(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  25. Cardenas-Rivero N, et al. Hypocalcemia in critically ill children. J Pediatr. 1989;114(6):946–51.

    Article  CAS  PubMed  Google Scholar 

  26. Rubin MR, Levin MA. Hypoparathyroidism and pseudohypoparathyroidism. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 354–61.

    Chapter  Google Scholar 

  27. Lips P, van Schoor NM, Bravenboer N. Vitamin D-related disorders. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken, NJ: Wiley; 2008. p. 329–35.

    Chapter  Google Scholar 

  28. Cusano NE, et al. Use of parathyroid hormone in hypoparathyroidism. J Endocrinol Investig. 2013;36(11):1121–7.

    Article  CAS  Google Scholar 

  29. Arnold A. Genetic basis of endocrine disease 5. Molecular genetics of parathyroid gland neoplasia. J Clin Endocrinol Metab. 1993;77(5):1108–12.

    CAS  PubMed  Google Scholar 

  30. Chandrasekharappa SC, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276(5311):404–7.

    Article  CAS  PubMed  Google Scholar 

  31. Mulligan LM, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363(6428):458–60.

    Article  CAS  PubMed  Google Scholar 

  32. Haden ST, et al. The effect of lithium on calcium-induced changes in adrenocorticotrophin levels. J Clin Endocrinol Metab. 1999;84(1):198–200.

    CAS  PubMed  Google Scholar 

  33. Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science. 1995;268(5207):98–100.

    Article  CAS  PubMed  Google Scholar 

  34. Egbuna OI, Brown EM. Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol. 2008;22(1):129–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rigby WF. The immunobiology of vitamin D. Immunol Today. 1988;9(2):54–8.

    Article  CAS  PubMed  Google Scholar 

  36. Burman KD, et al. Ionized and total serum calcium and parathyroid hormone in hyperthyroidism. Ann Intern Med. 1976;84:668–71.

    Article  CAS  PubMed  Google Scholar 

  37. Britto JM, et al. Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology. 1994;134(1):169–76.

    Article  CAS  PubMed  Google Scholar 

  38. Bergstrom WH. Hypercalciuria and hypercalcemia complicating immobilization. Am J Dis Child. 1978;132(6):553–4.

    CAS  PubMed  Google Scholar 

  39. Valentic JP, Elias AN, Weinstein GD. Hypercalcemia associated with oral isotretinoin in the treatment of severe acne. JAMA. 1983;250(14):1899–900.

    Article  CAS  PubMed  Google Scholar 

  40. Garabedian M, et al. Elevated plasma 1,25-dihydroxyvitamin D concentrations in infants with hypercalcemia and an elfin facies. N Engl J Med. 1985;312(15):948–52.

    Article  CAS  PubMed  Google Scholar 

  41. Taylor AB, Stern PH, Bell NH. Abnormal regulation of circulating 25-hydroxyvitamin D in the Williams syndrome. N Engl J Med. 1982;306(16):972–5.

    Article  CAS  PubMed  Google Scholar 

  42. Sharata H, Postellon DC, Hashimoto K. Subcutaneous fat necrosis, hypercalcemia, and prostaglandin E. Pediatr Dermatol. 1995;12(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  43. Kruse K, Irle U, Uhlig R. Elevated 1,25-dihydroxyvitamin D serum concentrations in infants with subcutaneous fat necrosis. J Pediatr. 1993;122(3):460–3.

    Article  CAS  PubMed  Google Scholar 

  44. Chen CC, et al. Comparison of parathyroid imaging with technetium-99 m- pertechnetate/sestamibi subtraction, double-phase technetium-99 m- sestamibi and technetium-99 m-sestamibi SPECT. J Nucl Med. 1997;38(6):834–9.

    CAS  PubMed  Google Scholar 

  45. Boggs JE, et al. Intraoperative parathyroid hormone monitoring as an adjunct to parathyroidectomy. Surgery. 1996;120(6):954–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diaz, R., Suárez-Ortega, L. (2018). Abnormalities in Calcium Homeostasis. In: Radovick, S., Misra, M. (eds) Pediatric Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73782-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73782-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73781-2

  • Online ISBN: 978-3-319-73782-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics