Skip to main content

The Digestive Function in Developing Fish Larvae and Fry. From Molecular Gene Expression to Enzymatic Activity

  • Chapter
  • First Online:
Emerging Issues in Fish Larvae Research

Abstract

There is a large amount of scientific literature on digestive enzymes activity during fish larval development. Nevertheless, most of this information refers to descriptive aspects of the ontogeny of hydrolyzing capacities, and only few studies looked into functional aspects and its relation with feeds and feeding activity. A comparison of published data normalized by days-degrees reveals at least three groups of species (precocious, medium and late) in relation to the time required for reaching maximum activity of digestive enzymes capacities, irrespective of the taxonomic group. Recent progress has allowed enlarging our knowledge on fish larvae digestive function. Such progress is partially based on new methodologies, but also on extended experimental designs and sampling protocols. On one side, the molecular basis of the onset of the digestive functionality has been examined in several species, cloning the mRNAs codifying the precursors of the main digestive enzymes and determining the gene expression profiles. On the other side, the daily rhythms coupling feeding and digestive enzyme production activities started to be investigated, giving a new dimension to our understanding of the digestive capacity during these early stages. Comparison between molecular expression and actual activity of the different enzymes is providing new insights on the regulation mechanisms. The connection between feeding behavior and digestive response both at genomic and biochemical levels is a required step towards the rationalization of feeding protocols with both live and inert diets, as a way to increase the nutrients utilization and the developmental performance at these early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alliot E, Pastoureaud A, Trellu J (1980) Evolution des activities enzymatiques dans le tractus digestif au cour de la vie larvaire de la sole. Variations des proteinogrammes et des zymogrammes. Bioch Syst Ecol 8:441–445

    Article  CAS  Google Scholar 

  • Alvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D et al (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem 31:83–93

    Google Scholar 

  • Andrade CAP, Nascimento F, Conceição LEC et al (2012) Red porgy, Pagrus pagrus, larvae performance and nutritional condition in response to different weaning regimes. J World Aquacult Soc 43:321–334

    Article  Google Scholar 

  • Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao J, Mu Y, Xiang LX et al (2015) Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet 11(4):e1005118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asgari R, Rafiee G, Eagderi S et al (2013) Ontogeny of the digestive enzyme activities in hatchery produced Beluga (Huso huso). Aquaculture 416–417:33–40

    Article  CAS  Google Scholar 

  • Babaei S, Kenari A, Nazari RE et al (2011) Developmental changes of digestive enzymes in Persian sturgeon (Acipenser persicus) during larval ontogeny. Aquaculture 318:138–144

    Article  CAS  Google Scholar 

  • Baragi V, Lovell RT (1986) Digestive enzyme activities in striped bass from first feeding through larva development. Trans Am Fish Soc 115(3):478–484

    Google Scholar 

  • Blanco-Vives B, Villamizar N, Ramos J et al (2010) Effect of daily thermo- and photo-cycles of different light spectrum on the development of Senegal sole (Solea senegalensis) larvae. Aquaculture 306:137–145

    Article  Google Scholar 

  • Blanco-Vives B, Aliaga-Guerrero M, Cañavate JP et al (2012) Metamorphosis induces a light-dependent switch in Senegalese sole (Solea senegalensis) from diurnal to nocturnal behavior. J Biol Rhythm 27:135–144

    Article  CAS  Google Scholar 

  • Blanco A, Planas M, Moyano FJ (2016) Ontogeny of digestive enzymatic capacities in juvenile seahorses Hippocampus guttulatus fed on different live diets. Aquac Res 47:3558–3569

    Article  CAS  Google Scholar 

  • Bolasina S, Pérez A, Yamashita Y (2006) Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture 252:503–515

    Article  CAS  Google Scholar 

  • Bucking C, Wood CM (2009) The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chime in rainbow trout. Aquacult Nutr 15:282–296

    Article  CAS  Google Scholar 

  • Cahu CL, Zambonino-Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzyme. Comp Biochem Physiol A 109:213–222

    Article  Google Scholar 

  • Cahu CL, Zambonino-Infante JL (1995) Maturation of the pancreatic and intestinal digestive functions in sea bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiol Biochem 14:431–437

    Article  CAS  PubMed  Google Scholar 

  • Cahu C, Rønnestad I, Grangier V et al (2004) Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238:295–308

    Article  CAS  Google Scholar 

  • Cara JB, Moyano FJ, Fauvel C et al (2007) Trypsin and chymotrypsin activities as nutritional indicators of quality in cultured fish larvae. J Fish Biol 70:1798–1808

    Article  CAS  Google Scholar 

  • Conceição LEC, van der Meeren T, Verreth JAJ et al (1997) Amino acid metabolism and protein turnover in larval turbot (Scophthalmus maximus) fed natural zooplankton or Artemia. Mar Biol 129:255–265

    Article  Google Scholar 

  • Cousin JCB, Baudin-Laurencin F, Gabaudan J (1987) Ontogeny of enzymatic enzyme activities in fed and fasting turbot, Scophthalmus maximus L. J Fish Biol 30:15–33

    Article  CAS  Google Scholar 

  • Cuesta IH, Lahiri K, Lopez-Olmeda JF et al (2014) Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes). Chronobiol Int 31:468–478

    Article  PubMed  Google Scholar 

  • Cui Z, Liu Y, Li CP et al (2008) The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae. Gene 432:33–43

    Article  PubMed  CAS  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW et al (2006) Characterization of a partial alpha-amylase clone from red porgy (Pagrus pagrus): expression during larval development. Comp Biochem Physiol B 143:209–218

    Article  CAS  PubMed  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW et al (2007) The spatiotemporal expression pattern of trypsinogen and bile salt activated lipase during the larval development of red porgy (Pagrus pagrus, Pisces, Sparidae). Mar Biol 152:109–118

    Article  CAS  Google Scholar 

  • Davie A, Sánchez JA, Vera LM et al (2011) Ontogeny of the circadian system during embryogenesis in rainbow trout (Oncorhynchus Mykyss) and the effect of prolonged exposure to continuous illumination on daily rhythms of per1, clock, and aanat2 Expression. Chronobiol Int 28:177–186

    Article  CAS  PubMed  Google Scholar 

  • Davidson WS, Koop BF, Jones S et al (2010) Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 11(9):403

    PubMed  PubMed Central  Google Scholar 

  • Dekens MPS, Whitmore D (2008) Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J 27:2757–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas SE, Gawlicka A, Mandla S et al (1999) Ontogeny of the stomach in winter flounder: characterization and expression of the pepsinogen and proton pump genes and determination of pepsin activity. J Fish Biol 55:897–915

    Article  CAS  Google Scholar 

  • Douglas SE, Mandla S, Gallant JW (2000) Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus. Aquaculture 190:247–260

    Article  CAS  Google Scholar 

  • Engrola S, Conceição LEC, Dias L et al (2007) Improving weaning strategies for Senegalese sole: effects of body weight and digestive capacity. Aquac Res 38:696–707

    Article  Google Scholar 

  • Engrola S, Figueira L, Conceição LEC et al (2009) Co-feeding in Senegalese sole larvae with inert diet from mouth opening promotes growth at weaning. Aquaculture 288:264–272

    Article  Google Scholar 

  • Farhoudi A, Abedian Kenari AM, Nazari RM et al (2013) Changes of digestive enzymes activity in common carp (Cyprinus carpio) during larval ontogeny. Iran J Fish Sci 12(2):320–334

    Google Scholar 

  • Faulk CK, Holt GJ (2009) Early weaning of southern flounder, Paralichthys lethostigma, larvae and ontogeny of selected digestive enzymes. Aquaculture 296:213–218

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fujii A, Kurokawa Y, Kawai S et al (2007) Diurnal variation of tryptic activity in larval stage and development of proteolytic enzyme activities of malabar grouper (Epinephelus malabaricus) after hatching. Aquaculture 270:68–76

    Article  CAS  Google Scholar 

  • Galaviz MA, García-Gasca A, Drawbridge M, Álvarez-González CA, López LM (2011) Ontogeny of the digestive tract and enzymatic activity in white seabass, Atractoscion nobilis, larvae. Aquaculture 318:162–168

    Article  CAS  Google Scholar 

  • Galaviz MA, García-Ortega A, Gisbert E et al (2012) Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp Biochem Physiol Part B 161:9–16

    Article  CAS  Google Scholar 

  • Galaviz MA, López LM, García Gasca A et al (2015) Digestive system development and study of acid and alkaline protease digestive capacities using biochemical and molecular approaches in totoaba (Totoaba macdonaldi) larvae. Fish Physiol Biochem 41:1117–1130

    Article  CAS  PubMed  Google Scholar 

  • Gamboa-Delgado J, Le Vay L, Fernández-Díaz C et al (2011) Effect of different diets on proteolytic enzyme activity, trypsinogen gene expression and dietary carbon assimilation in Senegalese sole (Solea senegalensis) larvae. Comp Biochem Physiol B 158:251–258

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Yang RB, Hu WB et al (2013) Ontogeny of the stomach in yellow catfish (Pelteobagrus fulvidraco): detection and quantification of pepsinogen and H+/K+-ATPase gene expression. J Anim Physiol Anim Nutr 97:20–26

    Article  CAS  Google Scholar 

  • Gisbert E, Giménez G, Fernandez I et al (2009) Development of digestive enzymes in common dentex, Dentex dentex, during early ontogeny. Aquaculture 287:381–387

    Article  CAS  Google Scholar 

  • Gisbert E, Morais S, Moyano FJ (2013) Feeding and digestion. In: Qin JG (ed) Larval fish culture. Nova Publisher, New York, pp 73–124

    Google Scholar 

  • Guerreiro I, de Vareilles M, Pousao-Ferreira P et al (2010) Effect of age-at-weaning on digestive capacity of white seabream (Diplodus sargus). Aquaculture 30:194–205

    Article  Google Scholar 

  • Hansen TW, Folkvord A, Grøtan E et al (2013) Genetic ontogeny of pancreatic enzymes in Labrus bergylta larvae and the effect of feed type on enzyme activities and gene expression. Comp Biochem Physiol Part B 164:176–184

    Article  CAS  Google Scholar 

  • Hauville MR, Zambonino-Infante JL, Bell G et al (2014) Impacts of three different microdiets on Florida Pompano, Trachinotus carolinus, weaning success, growth, fatty acid incorporation and enzyme activity. Aquaculture 422–423:268–276

    Article  CAS  Google Scholar 

  • He T, Xiao Z, Liu Q et al (2012) Ontogeny of the digestive tract and enzymes in rock bream (Oplegnathus fasciatus) (Temminck et Schlegel 1844) larvae. Fish Physiol Biochem 38:297–308

    Article  CAS  PubMed  Google Scholar 

  • Hjelmeland K, Pedersen BH, Nilssen EM (1988) Trypsin content in intestines of herring larvae, Clupea harengus, ingesting inert polystyrene spheres or live crustacea prey. J Mar Biol 98:331–335

    Article  CAS  Google Scholar 

  • Hlophe SN, Moyo NAG, Ncube I (2014) Postprandial changes in pH and enzyme activity from the stomach and intestines of Tilapia rendalli (Boulenger, 1897), Oreochromis mossambicus (Peters, 1852) and Clarias gariepinus (Burchell, 1822). Appl Ichthyol 30:35–41

    Article  CAS  Google Scholar 

  • Houde ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull US 87:471–495

    Google Scholar 

  • Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst CD, Bartlett SE, Davidson WS et al (1999) The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar. Gene 239:237–242

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol Phylogenet Evol 27:476–488

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Martínez LD, Álvarez-González CA, Tovar-Ramírez D et al (2012) Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis). Fish Physiol Biochem 38:441–454

    Article  PubMed  CAS  Google Scholar 

  • Kortner TM, Overrein I, Øie G et al (2011a) The influence of dietary constituents on the molecular ontogeny of digestive capability and effects on growth and appetite in Atlantic cod larvae (Gadus morhua). Aquaculture 315:114–120

    Article  CAS  Google Scholar 

  • Kortner TM, Overrein I, Øie G et al (2011b) Molecular ontogenesis of digestive capability and associated endocrine control in Atlantic cod (Gadus morhua) larvae. Comp Biochem Physiol A 160:190–199

    Article  CAS  Google Scholar 

  • Kotani T, Fushimi H (2011) Determination of appropriate feeding schedules from diel feeding rhythms in finfish larviculture. Aquaculture 315:104–113

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lazo JP, Darias MJ, Gisbert E (2011) Ontogeny of the digestive tract. In: Holt GJ (ed) Larval fish nutrition. Wiley-Blackwell, West Sussex, pp 3–46

    Chapter  Google Scholar 

  • Lien S, Koop BF, Sandve SR et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533(7602):200–205

    Article  CAS  PubMed  Google Scholar 

  • López-Olmeda JF (2017) Nonphotic entrainment in fish. Comp Bioch Physiol Part A 203:133–143

    Article  CAS  Google Scholar 

  • López-Ramírez G, Cuenca-Soria CA, Álvarez-González CA et al (2011) Development of digestive enzymes in larvae of Mayancichlid Cichlasoma urophthalmus. Fish Physiol Biochem 37:197–208

    Article  PubMed  CAS  Google Scholar 

  • Ma AJ, Liu XZ, Xu YJ et al (2006) Feeding rhythm and growth in the tongue sole, Cynoglossus semilaevis Gunther, during its early life stages. Aquac Res 37:586–593

    Article  CAS  Google Scholar 

  • MacKenzie BR, Ueberschär B, Basford D et al (1999) Diel variability of feeding activity in haddock (Melanogrammus aeglifinus) larvae in the East Shetland area, North Sea. Mar Biol 135:361–368

    Article  Google Scholar 

  • Martín-Robles AJ, Whitmore D, Pendón C et al (2013) Differential effects of transient constant light-dark conditions on daily rhythms of period and clock transcripts during Senegalese sole metamorphosis. Chronobiol Int 30:699–710

    Article  PubMed  Google Scholar 

  • Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  CAS  Google Scholar 

  • Mata JA, Moyano FJ, Martínez-Rodríguez G et al (2014) Effect of feeding frequency on digestive function of gilthead seabream (Sparus aurata) larvae fed on microdiet. In: Aquaculture Europe 2014, San Sebastián, Spain, 14–17 Oct 2014, pp 794–795 (book of abstracts)

    Google Scholar 

  • Mata-Sotres JA, Moyano FJ, Martínez-Rodríguez G et al (2016) Daily rhythms of digestive enzyme activity and gene expression in gilthead seabream (Sparus aurata) during ontogeny. Comp Biochem Physiol Part A 197:43–51

    Article  CAS  Google Scholar 

  • Mata-Sotres JA, Martínez-Rodríguez G, Pérez-Sánchez J et al (2015) Daily rhythms of clock gene expression and feeding behaviour during the development in gilthead seabream, Sparus aurata. Chronobiol Int 32:1061–1074

    Article  PubMed  CAS  Google Scholar 

  • Martínez I, Moyano FJ, Fernández-Díaz C et al (1999) Digestive enzyme activity during larval development of Senegal sole (Solea senegalensis). Fish Physiol Biochem 21:317–323

    Article  Google Scholar 

  • Mazurais D, Coves D, Papandroulakis N et al (2015) Gene expression pattern of digestive and antioxidant enzymes during the larval development of reared Atlantic bluefin tuna (ABFT), Thunnus thynnus L. Aquac Res 46:2323–2331

    Article  CAS  Google Scholar 

  • Moguel-Hernández I, Peña R, Andree KB et al (2016) Ontogeny changes and weaning effects in gene expression patterns of digestive enzymes and regulatory digestive factors in spotted rose snapper (Lutjanus guttatus) larvae. Fish Physiol Biochem 42:1319–1334

    Article  PubMed  CAS  Google Scholar 

  • Montoya A, López-Olmeda JF, Yúfera M et al (2010) Feeding time synchronizes daily rhythms of behavior and digestive physiology in gilthead seabream (Sparus aurata). Aquaculture 306:315–321

    Article  Google Scholar 

  • Montoya-Mejía M, Rodríguez-González H, Nolasco-Soria H (2016) Circadian cycle of digestive enzyme production at fasting and feeding conditions in Nile tilapia, Oreochromis niloticus (Actinopterygii: Perciformes: Cichlidae). Acta Ichthyol Piscat 46:163–170

    Article  Google Scholar 

  • Morais S, Lacuisse M, Conceição LEC et al (2004a) Ontogeny of the digestive capacity of Senegalese sole (Solea senegalensis), with respect to digestion, absorption and metabolism of amino acids from Artemia. Mar Biol 145:243–250

    Article  CAS  Google Scholar 

  • Morais S, Cahu C, Zambonino-Infante JL et al (2004b) Dietary TAG source and level affect performance and lipase expression in larval sea bass (Dicentrarchus labrax). Lipids 39:449–458

    Article  CAS  PubMed  Google Scholar 

  • Moyano FJ, Díaz M, Alarcón FJ et al (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  PubMed  Google Scholar 

  • Murashita K, Furuita H, Matsunari H et al (2013) Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish Physiol Biochem 39:895–905

    Article  CAS  PubMed  Google Scholar 

  • Murashita K, Matsunari H, Kumon K et al (2014) Characterization and ontogenetic development of digestive enzymes in Pacific bluefin tuna Thunnus orientalis larvae. Fish Physiol Biochem 40:1741–1755

    Article  CAS  PubMed  Google Scholar 

  • Murray HM, Gallant JW, Perez-Casanova JC et al (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62:816–833

    Article  CAS  Google Scholar 

  • Murray HM, Gallant JW, Johnson SC et al (2006) Cloning and expression analysis of three digestive enzymes from Atlantic halibut (Hippoglossus hippoglossus) during early development: predicting gastrointestinal functionality. Aquaculture 252:394–408

    Article  CAS  Google Scholar 

  • Navarro-Guillén C, Moyano FJ, Yúfera M (2015) Diel food intake and digestive enzyme production patterns in Solea senegalensis larvae. Aquaculture 435:33–42

    Article  CAS  Google Scholar 

  • Navarro-Guillén C, Rønnestad I, Jordal A-EO et al (2017) Involvement of cholecystokinin (CCK) in the daily pattern of gastrointestinal regulation of Senegalese sole (Solea senegalensis) larvae reared under different feeding regimes. Comp Biochem Physiol Part A 203:126–132

    Article  CAS  Google Scholar 

  • Nguyen HQ, Reinertsen H, Wold P-A et al (2011) Effects of early weaning strategies on growth, survival and digestive enzyme activities in cobia (Rachycentron canadum L.) larvae. Aquacult Int 19:63–78

    Article  CAS  Google Scholar 

  • Østergaard P, Munk P, Janekarn V (2005) Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar Biol 146:595–606

    Article  Google Scholar 

  • Parma L, Bonaldo A, Massi P et al (2013) Different early weaning protocols in common sole (Solea solea L.) larvae: implications on performances and molecular ontogeny of digestive enzyme precursors. Aquaculture 414–415:26–35

    Article  CAS  Google Scholar 

  • Peres A, Zambonino Infante JL, Cahu CL (1998) Dietary regulation of activities and mRNA levels of trypsin and amylase in seabass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 19:145–152

    Article  CAS  Google Scholar 

  • Pedersen BH, Hjelmeland K (1988) Fate of trypsin and assimilation efficiency in larval herring (Clupea harengus) following digestion of copepods. Mar Biol 97:467–476

    Article  CAS  Google Scholar 

  • Pérez-Casanova JC, Murray HM, Gallant JW et al (2006) Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 251:377–401

    Article  Google Scholar 

  • Ribeiro L, Zambonino-Infante JL, Cahu C et al (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473

    Article  CAS  Google Scholar 

  • Rodrigues JB, Leitão NJ, Chaves KS et al (2014) High protein microparticles produced by ionic gelation containing Lactobacillus acidophilus for feeding pacu larvae. Food Res Int 63:25–32

    Article  CAS  Google Scholar 

  • Rondeau EB, Minkley DR, Leong JS et al (2014) The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS ONE 9(7):e102089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rønnestad I, Pérez Domínguez R, Tanaka M (2000) Ontogeny of digestive tract functionality in Japanese flounder, Paralichthys olivaceus studied by in vivo microinjection: pH and assimilation of free amino acids. Fish Physiol Biochem 22:225–235

    Article  Google Scholar 

  • Rønnestad I, Yúfera M, Ueberschär B et al (2013) Feeding behaviour and digestion physiology in larval fish—current knowledge, and gaps and bottlenecks in research. Rev Aquacult 5(Suppl. 1):S59–S98

    Article  Google Scholar 

  • Ruan GL, Li Y, Gao ZX, Wang HL et al (2010) Molecular characterization of trypsinogens and development of trypsinogen gene expression and tryptic activities in grass carp (Ctenopharyngodon idellus) and topmouth culter (Culter alburnus). Comp Biochem Physiol Part B 155:77–85

    Article  CAS  Google Scholar 

  • Sahlmann C, Gu J, Kortner TM et al (2015) Ontogeny of the digestive system of Atlantic salmon (Salmo salar L.) and effects of soybean meal from start-feeding. PLoS ONE 10(4):e0124179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saleh R, Betancor MB, Roo R et al (2013) Optimum soybean lecithin contents in microdiets for gilthead seabream (Sparus aurata) larvae. Aquacult Nutr 19:585–597

    Article  CAS  Google Scholar 

  • Santigosa E, Sánchez J, Médale F et al (2008) Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 282:68–74

    Article  CAS  Google Scholar 

  • Schaefer FJ, Flues S, Meyer S et al (2017) Inter- and intra-individual variability in growth and food consumption in pikeperch, Sander lucioperca L., larvae revealed by individual rearing. Aquac Res 48:800–808

    Article  Google Scholar 

  • Shan XJ, Huang W, Cao L et al (2009) Ontogenetic development of digestive enzymes and effect of starvation in miiuy croaker Miichthys miiuy larvae. Fish Physiol Biochem 35:385–398

    Article  CAS  PubMed  Google Scholar 

  • Shoji J, Maehara T, Aoyama M et al (2001) Daily ration of Japanese Spanish mackerel Scomberomorus niphonius larvae. Fish Sci 67:238–245

    Article  CAS  Google Scholar 

  • Shoji J, Maehara T, Tanaka M (1999) Diel vertical movement and feeding rhythm of Japanese mackerel larvae in the central Seto inland sea. Fish Sci 65:726–730

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Findlay S, Franchini P et al (1997) Enzymatic analysis of riverine bacterioplankton production. Limnol Oceanogr 42(1):29–38

    Article  CAS  Google Scholar 

  • Skoog DA, West DM, Holler FJ (1995) Química Analítica. McGraw Hill Interamericana ed., México

    Google Scholar 

  • Solovyev M, Campoverde C, Öztürkd C et al (2016) Morphological and functional description of the development of the digestive system in meagre (Argyrosomus regius): an integrative approach. Aquaculture 464:381–391

    Article  Google Scholar 

  • Srichanun M, Tantikitti C, Utarabhand P et al (2013) Gene expression and activity of digestive enzymes during the larval development of Asian seabass (Lates calcarifer). Comp Biochem Physiol Part B 165:1–9

    Google Scholar 

  • Suzer C, Fırat K, Saka Ş (2006) Ontogenic development of the digestive enzymes in common pandora, Pagellus erythrinus L. larvae. Aquac Res 37:1565–1571

    Article  Google Scholar 

  • Suzer C, Aktülün S, Çoban D et al (2007a) Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo). Comp Biochem Physiol A 148:470–477

    Article  CAS  Google Scholar 

  • Suzer C, Kamacı HO, Çoban D et al (2007b) Digestive enzyme activity of the red porgy (Pagrus pagrus, L.) during larval development under culture conditions. Aquac Res 38:1178–1785

    Article  CAS  Google Scholar 

  • Tine M, Kuhl H, Gagnaire PA et al (2014) European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun 5:5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo-Cuevas M, Moyano FJ, Tovar D et al (2011) Development of digestive biochemistry in the initial stages of three cultured Atherinopsids. Aquac Res 42:776–786

    Article  Google Scholar 

  • Ueberschär BFR (1988) Determination of the nutritional condition of individual marine fish larvae by analyzing their proteolytic enzyme activities with a highly sensitive fluorescence technique. Meeresforsch 32:144–154

    Google Scholar 

  • Ueberschär B (1993) Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fhyn HJ (eds) Physiological and biochemical aspects of fish development. University of Bergen, Norway, pp 233–239

    Google Scholar 

  • Ueberschär B, Pedersen BH, Hjelmeland K (1992) Quantification of trypsin with a radioimmunoassay in herring larvae (Clupea harengus) compared with a highly sensitive fluorescence technique to determine tryptic enzyme activity. Mar Biol 13:468–473

    Google Scholar 

  • Vera LM, Negrini P, Zagatti C et al (2013) Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol Int 30:649–661

    Article  CAS  PubMed  Google Scholar 

  • Villamizar N, Blanco-Vives B, Migaud H et al (2011) Effects of light during early larval development of some aquacultured teleosts: a review. Aquaculture 315:86–94

    Article  Google Scholar 

  • Villamizar N, García-Alcazar A, Sánchez-Vázquez FJ (2009) Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 292:80–86

    Article  Google Scholar 

  • Wang Y, Hu M, Wang W et al (2008) Transpositional feeding rhythm of loach Misgurnus anguillicaudatus from larvae to juveniles and its ontogeny under artificial rearing conditions. Aquacult Int 16:539–549

    Article  Google Scholar 

  • Wang C, Xie S, Zhu X, Lei W, Yang Y, Liu J (2006) Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae. Aquac 254(1–4):554–562

    Google Scholar 

  • Whitmore D, Foulkes NS, Sassone-Corsi P (2000) Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404:87–91

    Article  CAS  PubMed  Google Scholar 

  • Yoseda K, Yamamoto K, Asami K et al (2008) Influence of light intensity on feeding, growth, and early survival of leopard coral grouper (Plectropomus leopardus) larvae under mass-scale rearing conditions. Aquaculture 279:55–62

    Article  Google Scholar 

  • Yúfera M (2016) Intake and digestion of food by fish larvae and juveniles: a strategy planned over twenty-four hours. World Aquacult Mag 47(2):28–31

    Google Scholar 

  • Yúfera M, Darias MJ (2007) Changes in the gastrointestinal pH from larvae to adult in Senegal sole (Solea senegalensis). Aquaculture 267:94–99

    Article  CAS  Google Scholar 

  • Yúfera M, Fernández-Díaz C, Vidaurreta A et al (2004) Gastrointestinal pH and development of the acid digestion in larvae and early juveniles of Sparus aurata L. (Pisces: teleostei). Mar Biol 144:863–869

    Article  Google Scholar 

  • Yúfera M, Fernández-Díaz C, Pascual E (1995) Feeding rates of gilthead seabream, Sparus aurata, larvae on microcapsules. Aquaculture 134:257–268

    Article  Google Scholar 

  • Yúfera M, Moyano FJ, Astola A et al (2012) Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression. PLoS ONE 7(3):e33687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yúfera M, Romero MJ, Pujante IM et al (2014) Effect of feeding frequency on the daily rhythms of acidic digestion in a teleost fish (gilthead seabream). Chronobiol Int 31:1024–1033

    Article  PubMed  CAS  Google Scholar 

  • Yúfera M, Nguyen MV, Engrola S et al (2016) Cobia exhibits a permanent gastric acidity as digestion strategy. In: Aquaculture Europe 2016, Edinburgh, Scotland, UK, 20–23 Sept 2016

    Google Scholar 

  • Yúfera M, Perera E, Mata-Sotres JA et al (2017) The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Sci Rep 7:12943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambonino-Infante JL, Cahu C (1994) Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 12:399–408

    Article  Google Scholar 

  • Zeng LQ, Fu SJ, Li XM et al (2014) Physiological and morphological responses to the first bout of refeeding in southern catfish (Silurus meridionalis). J Comp Physiol B 184:329–346

    Article  CAS  PubMed  Google Scholar 

  • Zeytin S, Schulz C, Ueberschär B (2016) Diurnal patterns of tryptic enzyme activity under different feeding regimes in gilthead sea bream (Sparus aurata) larvae. Aquaculture 457:85–90

    Article  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

Download references

Acknowledgements

This work received national funds through the Spanish Ministry of Economic Affairs and Competitiveness (MINECO) by projects RIDIGEST (AGL2011-23722) and EFISHDIGEST (AGL2014-52888-R) with European Regional Development Fund (FEDER/ERDF) contributions granted to M. Yúfera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yúfera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yúfera, M., Moyano, F.J., Martínez-Rodríguez, G. (2018). The Digestive Function in Developing Fish Larvae and Fry. From Molecular Gene Expression to Enzymatic Activity. In: Yúfera, M. (eds) Emerging Issues in Fish Larvae Research. Springer, Cham. https://doi.org/10.1007/978-3-319-73244-2_3

Download citation

Publish with us

Policies and ethics