Skip to main content

Structure and Properties of Cellulose and Its Derivatives

  • Chapter
  • First Online:
Cellulose Derivatives

Abstract

The first systematic clarification of the cellulose structure began in 1837 with investigations of the French agricultural chemist Anselme Payen and finally the French Academy named the carbohydrate “Cellulose”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Payen ACR (1838) Mémoir sur la composition du tissue propre des plantes et du ligneux. Hebd Seances Acad Sci 7:1052

    Google Scholar 

  2. Payen ACR (1838) Hebd Seances Acad Sci 7:1125

    Google Scholar 

  3. Rao VSR, Sundararajan PR, Ramakrishnan C, Ramachandran GN (1957) In: Ramachandran GN (ed) Conformation of biopolymers, vol 1. Academic Press, New York, p 721

    Google Scholar 

  4. Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach, Yverdon

    Google Scholar 

  5. Pérez S, Mazeau K (2005) In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, vol 1. Marcel Dekker, New York, p 41

    Google Scholar 

  6. Fardim P, Holmbom B (2003) Fast determination of anionic groups in different pulp fibers by methylene blue sorption. Tappi J 2:28–32

    CAS  Google Scholar 

  7. Klemm D, Philipp B, Heinze T et al (1998) Comprehensive cellulose chemistry, vol I. Wiley–VCH, Weinheim, p 236

    Google Scholar 

  8. Roehrling J, Potthast A, Rosenau T, Lange T, Ebner G, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3:959–968

    Article  CAS  Google Scholar 

  9. Bohrn R, Potthast A, Schiehser S, Rosenau T, Sixta H, Kosma P (2006) The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7:1743–1750

    Article  CAS  Google Scholar 

  10. Kamide K, Okajima K, Kowsaka K, Matsui T (1985) CP/MASS [cross-polarization/magic angle sample spinning] carbon-13 NMR spectra of cellulose solids: an explanation by the intramolecular hydrogen bond concept. Polym J 17:701–706 (Tokyo, Japan)

    Google Scholar 

  11. Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395

    Article  CAS  Google Scholar 

  12. Michell AJ (1988) Second derivative FTIR spectra of celluloses I and II and related mono- and oligosaccharides. Carbohydr Res 173:185–195

    Article  CAS  Google Scholar 

  13. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  CAS  Google Scholar 

  14. Gardner KH, Blackwell J (1974) Structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  15. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  16. Irklei VM, Kleiner YY, Vavrinyuk OS, Gal’braikh LS (2005) Kinetics of degradation of cellulose in basic medium. Fibre Chem 37:452–458

    Google Scholar 

  17. El Seoud OA, Marson GA, Giacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201:882–889

    Article  Google Scholar 

  18. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  19. Fidale LC, Possidonio S, El Seoud OA (2009) Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol Biosci 9:813–821

    Article  CAS  Google Scholar 

  20. Heinze T, Dorn S, Schoebitz M, Liebert T, Koehler S, Meister F (2008) Interactions of ionic liquids with polysaccharides—2: cellulose. Macromol Symp 262:8–22

    Article  CAS  Google Scholar 

  21. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam chapter 2

    Google Scholar 

  22. Wu C-S (ed) (1995) Handbook of size exclusion chromatography. Marcel Dekker, New York

    Google Scholar 

  23. Elias H-G (1997) An introduction to polymer science. VCH, Weinheim

    Google Scholar 

  24. Hunt BJ, James MI (eds) (1997) Polymer characterization. Chapman and Hall, London

    Google Scholar 

  25. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York, p 145, 193

    Google Scholar 

  26. Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin

    Book  Google Scholar 

  27. Campbell D, Pethrick RA, White JR (2000) Polymer characterization: physical techniques, 2nd edn. Stanley Thornes, Cheltenham

    Google Scholar 

  28. Wu C (2008) In: Characterization and analysis of polymers. Wiley, New York, p 211

    Google Scholar 

  29. Dawkins JV (2008) Characterization and analysis of polymers. Wiley, New York, p 230

    Google Scholar 

  30. Rosen MR (1979) Characterization of non-Newtonian flow. Polym-Plast Technol Eng 12:1–42

    Article  CAS  Google Scholar 

  31. Aono H, Tatsumi D, Matsumoto T (2006) Scaling analysis of cotton cellulose/LiCl DMAc solution using light scattering and rheological measurements. J Polym Sci Part B Polym Phys 44:2155–2160

    Article  CAS  Google Scholar 

  32. Kasaai MR (2002) Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J Appl Polym Sci 86:2189–2193

    Article  CAS  Google Scholar 

  33. Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13:1688–1699

    Article  CAS  Google Scholar 

  34. Possidonio S, Fidale LC, El Seoud OA (2010) Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci Part A Polym Chem 48:134–143

    Article  CAS  Google Scholar 

  35. Kadla JF, Korehei R (2010) Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system. Biomacromolecules 11:1074–1081

    Article  CAS  Google Scholar 

  36. Tamai N, Aono H, Tatsumi D, Matsumoto T (2003) Differences in rheological properties of solutions of plant and bacterial cellulose in LiCl/N, N-dimethylacetamide. J Soc Rheol 31:119–130

    Article  CAS  Google Scholar 

  37. Kuang Q-L, Zhao J-C, Niu Y-H, Zhang J, Wang Z-H (2008) Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J Phys Chem B 112:10234–10240

    Article  CAS  Google Scholar 

  38. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194

    Article  CAS  Google Scholar 

  39. Standard Test Methods for Intrinsics Viscosity of Cellulose (2001) ASTM D1795–94

    Google Scholar 

  40. Kamide K, Miyazaki Y, Abe T (1979) Mark-Houwink-Sakurada equations of cellulose triacetate in various solvents. Makromol Chem 180:2801–2805

    Article  CAS  Google Scholar 

  41. Kuhn W, Kuhn H (1943) The coiling of fiber molecules in flowing solutions. Helv Chim Acta 26:1394–1465

    Article  CAS  Google Scholar 

  42. Kuhn W, Kuhn H (1945) Significance of limited free rotation for the viscosity and flow birefringence of solutions of fiber molecules. I Helv Chim Acta 28:1553–1579

    Google Scholar 

  43. Kuhn W, Kuhn H (1947) Diffusion, Sedimentation und Viskositat bei Losungen verzweigter Fadenmolekel. Helv Chim Acta 30:1233–1256

    Article  CAS  Google Scholar 

  44. Jolley LJ (1939) The solution of chemically modified cotton cellulose in alkaline solutions. V. The solvent action of solutions of cupric hydroxide in aqueous ethylenediamine. J Text Inst 30:T22–T41

    Article  CAS  Google Scholar 

  45. Lovell EL (1944) Viscometric chain length of wood cellulose in Triton F solution. Ind Eng Chem Anal Ed 16:683–685

    Article  CAS  Google Scholar 

  46. Henley D (1960) The cellulose solvent Cadoxen, its preparation, and a viscometric relationship with cupriethylenediamine. Sven Papperstidn 63:143–146

    CAS  Google Scholar 

  47. Claesson S, Bergmann W, Jayme G (1959) Solutions of cellulose in an alkaline iron-tartaric acid-sodium complex. Sven Papperstidn 62:141–155

    CAS  Google Scholar 

  48. Strlic M, Kolar J, Zigon M, Pihlar B (1998) Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidized cellulose. J Chromatogr A 805:93–99

    Article  CAS  Google Scholar 

  49. Marx-Figini M (1987) Evaluation of the accessibility of celluloses by the intrinsic viscosity ratio [η]cellulose nitrate acetone/[η]unsubstituted cellulose ethylenediamine-copper II-complex. Polym Bull 17:225–229

    Article  CAS  Google Scholar 

  50. Burchard W, Husemann E (1961) A comparative structure analysis of cellulose and amylose tricarbanilates in solution. Makromol Chem 44–46:358–387

    Article  Google Scholar 

  51. Philipp B, Linow KJ (1970) Interpretation of the chain length differences in the cuoxam and nitrate degree of polymerization of cellulose on the basis of absolute molecular weight determinations of some cellulose derivatives. Faserforsch Textiltech 21:13–20

    CAS  Google Scholar 

  52. Danhelka J, Kossler I, Bohackova V (1976) Determination of molecular weight distribution of cellulose by conversion into tricarbanilate and fractionation. J Polym Sci Polym Chem Ed 14:287–298

    Article  CAS  Google Scholar 

  53. Marx-Figini M (1978) Significance of the intrinsic viscosity ratio of unsubstituted and nitrated cellulose in different solvents. Angew Makromol Chem 72:161–171

    Article  CAS  Google Scholar 

  54. Terbojevich M, Cosani A, Conio G, Ciferri A, Bianchi E (1985) Mesophase formation and chain rigidity in cellulose and derivatives. 3. Aggregation of cellulose in N, N-dimethylacetamide-lithium chloride. Macromolecules 18:640–646

    Article  CAS  Google Scholar 

  55. Ciacco GT, Morgado DL, Frollini E, Possidonio S, El Seoud OA (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21:71–77

    Article  CAS  Google Scholar 

  56. Kuzmina O, Sashina E, Troshenkowa S, Wawro D (2010) Dissolved state of cellulose in ionic liquids—the impact of water. Fibres Text East Eur 18:32–37

    CAS  Google Scholar 

  57. Ramos LA, Morgado DL, El Seoud OA, da Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392

    Article  CAS  Google Scholar 

  58. McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  59. Terbojevich M, Cosani A, Camilot M, Focher B (1995) Solution studies of cellulose tricarbanilates obtained in homogeneous phase. J Appl Polym Sci 55:1663–1671

    Article  CAS  Google Scholar 

  60. Röder T, Moslinger R, Mais U, Morgenstern B, Glatter O (2003) Characterization of the solution structure of technical cellulose solutions. Lenzinger Ber 82:118–127

    Google Scholar 

  61. Kim SO, Shin WJ, Cho H, Kim BC, Chung IJ (1999) Rheological investigation on the anisotropic phase of cellulose-MMNO/H2O solution system. Polymer 40:6443–6450

    Article  CAS  Google Scholar 

  62. Tswett M (1906) Physicochemical studies over the chlorophyll. The adsorptions. Ber Dtsch Bot Ges 24:316–323

    CAS  Google Scholar 

  63. Martin AJP (1957) In: Desty DH (ed) Vapour phase chromatography (1956 London symposium) Butterworth, London, p 1

    Google Scholar 

  64. Golay MJE (1957) In: Desty DH (ed) Vapour phase chromatography (1956 London Symposium) Butterworth, London, p 36

    Google Scholar 

  65. Lathe GH, Ruthven CRJ Jr (1956) Separation of substances and estimation of their relative molecular sizes by the use of columns of starch in water. Biochem J 62:665–674

    Article  CAS  Google Scholar 

  66. Porath J, Flodin P (1959) Gel filtration: a method for desalting and group separation. Nature 183:1657–1659

    Article  CAS  Google Scholar 

  67. Moore JC (1964) Gel permeation chromatography. I. New method for molecular-weight distribution of high polymers. J Polym Sci Part B 2:835–843

    Article  Google Scholar 

  68. Gallot-Grubisic Z, Rempp P, Benoit H (1967) Universal calibration for gel permeation chromatography. J Polym Sci Polym Lett Ed 5:753–759

    Article  CAS  Google Scholar 

  69. Dawkins JV (1984) Calibration of separation systems. In: Janca J (ed) Steric exclusion liquid chromatography of polymers. Marcel Dekker, New York, pp 53–116

    Google Scholar 

  70. Connor AH (1995) In: Wu C-S (ed) Handbook of size exclusion chromatography. Marcel Dekker, New York, pp 331–352

    Google Scholar 

  71. Bikova T, Treimanis A (2002) Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: a review. Carbohydr Polym 48:23–28

    Article  CAS  Google Scholar 

  72. Eremeeva T (2003) Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review. J Biochem Biophys Methods 56:253–264 and references cited therein

    Article  CAS  Google Scholar 

  73. Sollinger S, Diamantoglou M (1996) Spectroscopical characterization of cellulose derivatives. Papier (Darmstadt) 12:691–700

    Google Scholar 

  74. Bao YT, Bose A, Ladisch MR, Tsao GT (1980) New approach to aqueous gel permeation chromatography of nonderivatized cellulose. J Appl Polym Sci 25:263–275

    Article  CAS  Google Scholar 

  75. Sjöholm E, Gustafsson K, Kolar J, Pettersson B (1994) Characterization of chemical pulps by SEC. In: Proceedings of the 3rd European workshop on lignocellulosics and pulp, Stockholm, pp 246–250

    Google Scholar 

  76. Hortling B, Färm P, Sundquist J (1994) Investigations of pulp components (polysaccharides, residual lignins) using HP/SEC system with viscometric RI and UV detectors. In: Proceedings of the 3rd European workshop on lignocellulosics and pulp, Stockholm, pp 256–259

    Google Scholar 

  77. Rahkamo L, Viikari L, Buchert J, Paakkari T, Suortti T (1998) Enzymic and alkaline treatments of hardwood dissolving pulp. Cellulose 5:79–88

    Article  CAS  Google Scholar 

  78. Timpa JD (1991) Application of universal calibration in gel permeation chromatography for molecular weight determinations of plant cell wall polymers: cotton fiber. J Agric Food Chem 39:270–275

    Article  CAS  Google Scholar 

  79. Silva AA, Laver ML (1997) Molecular weight characterization of wood pulp cellulose: dissolution and size exclusion chromatographic analysis. Tappi J 80:173–180

    CAS  Google Scholar 

  80. Kennedy JF, Rivera ZS, White CA, Lloyd LL, Warner FP (1990) Molecular weight characterization of underivatized cellulose by GPC using lithium chloride-dimethylacetamide solvent system. Cellul Chem Technol 24:319–325

    CAS  Google Scholar 

  81. Sjöholm E, Gustafsson K, Eriksson B, Brown W, Colmsjö A (2000) Aggregation of cellulose in lithium chloride/N, N-dimethylacetamide. Carbohydr Polym 41:153–161

    Article  Google Scholar 

  82. Berthold F, Gustafsson K, Berggren R, Sjöholm E, Lindström M (2004) Dissolution of softwood kraft pulps by direct derivatization in lithium chloride/N, N-dimethylacetamide. J Appl Polym Sci 94:424–431

    Article  CAS  Google Scholar 

  83. Striegel AM, Timpa JD (1995) Molecular characterization of polysaccharides dissolved in N, N-dimethylacetamide-lithium chloride by gel-permeation chromatography. Carbohydr Res 267:271–290

    Article  CAS  Google Scholar 

  84. Sjöholm E, Gustafsson K, Berthold F, Colmsjö A (2000) Influence of the carbohydrate composition on the molecular weight distribution of kraft pulps. Carbohydr Polym 41:1–7

    Article  Google Scholar 

  85. Brewer RJ, Tanghe LJ, Baily S (1969) Gel-permeation chromatography of cellulose esters. Effect of average degree of polymerization, degree of substitution, substituent size, and primary hydroxyl content. J Polym Sci Part A-1 Polym Chem 7:1635–1645

    Google Scholar 

  86. Schurz J, Haas J, Kraessig H (1971) Gel permeation chromatography of cellulose trinitrate in tetrahydrofuran. II Cellul Chem Technol 5:269–284

    CAS  Google Scholar 

  87. Kulicke WM, Clasen C, Lohman C (2005) Characterization of water-soluble cellulose derivatives in terms of the molar mass and particle size as well as their distribution. Macromol Symp 223:151–174

    Article  CAS  Google Scholar 

  88. Ramos L (2005) Correlation between the physic-chemical properties of cellulose and its derivatization in LiCl/DMAc and DMSO/TBAF.3H2O. Ph.D. thesis, University of São Paulo

    Google Scholar 

  89. Saake B, Horner S, Kruse T, Puls J, Liebert T, Heinze T (2000) Detailed investigation on the molecular structure of carboxymethyl cellulose with unusual substitution pattern by means of an enzyme-supported analysis. Macromol Chem Phys 201:1996–2002

    Article  CAS  Google Scholar 

  90. Brown W, Henely D, Ohman J (1963) Studies on cellulose derivatives. I. The dimensions and configuration of sodium carboxymethyl cellulose in cadoxene and the influence of the degree of substitution. Makromol Chem 62:164–182

    Article  CAS  Google Scholar 

  91. Eremeeva TE, Bykova TO (1998) SEC of mono-carboxymethyl cellulose (CMC) in a wide range of pH; Mark-Houwink constants. Carbohydr Polym 36:319–326

    Article  CAS  Google Scholar 

  92. Rinaudo M, Danhelka J, Milas MA (1993) A new approach to characterizing carboxymethylcelluloses by size-exclusion chromatography. Carbohydr Polym 21:1–5

    Article  CAS  Google Scholar 

  93. Wittgren B, Wahlund KG (2000) Size characterization of modified celluloses in various solvents using flow FFF-MALS and MB-MALS. Carbohydr Polym 43:63–73

    Article  CAS  Google Scholar 

  94. Yokoyama W, Renner-Nantz JJ, Shoemaker CF (1998) Starch molecular mass and size by size-exclusion chromatography in DMSO-LiBr coupled with multiple angle laser light scattering. Cereal Chem 75:530–535

    Article  CAS  Google Scholar 

  95. Berry GC (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J Chem Phys 44:4550–4564

    Article  CAS  Google Scholar 

  96. Andersson M, Wittgren B, Wahlund KG (2001) Ultrahigh molar mass component detected in ethyl hydroxyethyl cellulose by asymmetrical flow field-flow fractionation coupled to multi-angle light scattering. Anal Chem 73:4852–4861

    Article  CAS  Google Scholar 

  97. Evans DF, Wennerström A (1999) The colloidal domain, 2nd edn. Weinheim, Wiley-VCH

    Google Scholar 

  98. Saalwaechter K, Burchard W, Kluefers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107

    Article  CAS  Google Scholar 

  99. Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N, N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42:6765–6773

    Article  Google Scholar 

  100. Isogai A, Yanagisawa M (2008) In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell Publishing, Oxford, pp 206–226

    Chapter  Google Scholar 

  101. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524 and references cited therein

    Article  CAS  Google Scholar 

  102. Morgenstern B, Röder T (1998) Investigations on structures in the system cellulose/N-methylmorpholine N-oxide monohydrate by means of light scattering measurements. Papier (Heidelberg) 52:713–717

    CAS  Google Scholar 

  103. Röder T, Morgenstern B (1999) The influence of activation on the solution state of cellulose dissolved in N-methylmorpholine-N-oxide-monohydrate. Polymer 40:4143–4147

    Article  Google Scholar 

  104. Trulove PC, Reichert WM, De Long HC, Kline SR, Rahatekar SS, Gilman JW, Muthukumar M (2009) The structure and dynamics of silk and cellulose dissolved in ionic liquids. ECS Trans 16:111–117

    Article  CAS  Google Scholar 

  105. El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Adv Polym Sci 186:103–149

    Article  CAS  Google Scholar 

  106. Schulz L, Burchard W, Dönges R (1998) Evidence of supramolecular structures of cellulose derivatives in solution. In: Heinze T, Glasser WG (eds) Cellulose derivatives: modification, characterization, and nanostructures, ACS Symposium SERIES 688, Washington DC, pp 218–238

    Google Scholar 

  107. Morgenstern B, Kammer H-W (1998) On the particulate structure of cellulose solutions. Polymer 40:1299–1304

    Article  Google Scholar 

  108. Menger FM (1993) Enzyme reactivity from an organic perspective. Acc Chem Res 26:206–212

    Article  CAS  Google Scholar 

  109. Tsunashima Y, Kawanishi H, Horii F (2002) Reorganization of dynamic self-assemblies of cellulose diacetate in solution: dynamical critical-like fluctuations in the lower critical solution temperature system. Biomacromolecules 3:1276–1285

    Article  CAS  Google Scholar 

  110. Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008–2022

    Article  CAS  Google Scholar 

  111. Nilsson S, Sundeloef L-O, Bedrich Porsch (1995) On the characterization principles of some technically important water-soluble nonionic cellulose derivatives. Carbohydr Polym 28:265–275

    Article  CAS  Google Scholar 

  112. Wittgren B, Porsch B (2002) Molar mass distribution of hydroxypropyl cellulose by size exclusion chromatography with dual light scattering and refractometric detection. Carbohydr Polym 49:457–469

    Article  CAS  Google Scholar 

  113. Wittgren B, Stefansson M, Porsch B (2005) Interactions between sodium dodecyl sulphate and non-ionic cellulose derivatives studied by size exclusion chromatography with online multi-angle light scattering and refractometric detection. J Chromatogr A 1082:166–175

    Article  CAS  Google Scholar 

  114. Dupont A-L, Mortha G (2006) Comparative evaluation of size-exclusion chromatography and viscometry for the characterisation of cellulose. J Chromatogr A 1026:129–141

    Article  CAS  Google Scholar 

  115. Fukasawa M, Obara S (2004) Molecular weight determination of hypromellose acetate succinate (HPMCAS) using size exclusion chromatography with a multi-angle laser light scattering detector. Chem Pharm Bull 52:1391–1393

    Article  CAS  Google Scholar 

  116. Schagerlöf H, Richardson S, Momcilovic D, Brinkmalm G, Wittgren B, Tjerneld F (2006) Characterization of chemical substitution of hydroxypropyl cellulose using enzymatic degradation. Biomacromolecules 7:80–85

    Article  CAS  Google Scholar 

  117. Schittenhelm N, Kulicke W-M (2000) Producing homologous series of molar masses for establishing structure-property relationships with the aid of ultrasonic degradation. Macromol Chem Phys 201:1976–1984

    Article  CAS  Google Scholar 

  118. Clasen C, Kulicke W-M (2001) Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog Polym Sci 26:1839–1919 and references cited therein

    Article  CAS  Google Scholar 

  119. Elias H-G (1997) An introduction to polymer science. VCH, p 275

    Google Scholar 

  120. Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by means of Roentgen rays. Nachr Ges Wiss Gottingen 96–100, CAN 13:13268

    Google Scholar 

  121. Watanabe S, Hayashi J, Akahori T (1974) Molecular chain conformation and crystallite structure of cellulose. I. Fine structure of rayon fibers. J Polym Sci Polym Chem Ed 12:1065–1087

    Article  CAS  Google Scholar 

  122. Hattula T (1987) Crystallization and disordering of cellulose in dissolving pulp during heterogeneous acid hydrolysis. Pap Puu 69:92–95

    CAS  Google Scholar 

  123. Lenz J, Schurz J (1990) Fibrillar structure and deformation behavior of regenerated cellulose fibers. I. Methods of investigation and crystallite dimensions. Cellul Chem Technol 24:3–21

    CAS  Google Scholar 

  124. Lenz J, Schurz J, Wrentschur E, Geymayer W (1986) Dimensions of crystalline regions in regenerated cellulosic fibers. Angew Makromol Chem 138:1–19

    Article  CAS  Google Scholar 

  125. Ioyelovich MY (1991) Supermolecular structure of native and isolated cellulose. Polym Sci 33:1670–1676

    Google Scholar 

  126. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101:4461–4471

    Article  CAS  Google Scholar 

  127. Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192

    Article  CAS  Google Scholar 

  128. Lenz J, Schurz J, Wrentschur E (1988) The length of the crystalline domains in fibers of regenerated cellulose. Determination of the crystallite length of cellulose II by means of wide-angle X-ray diffraction and transmission electron microscopy. Holzforschung 42:117–122

    Article  CAS  Google Scholar 

  129. Krässig HA (1992) Cellulose: Structure, accessibility, and reactivity. Gordon and Breach, Yverdon, p 66

    Google Scholar 

  130. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr 14:1180–1185

    Article  CAS  Google Scholar 

  131. Vonk CG (1973) Computerization of Ruland’s x-ray method for determination of the crystallinity in polymers. J Appl Crystallogr 6:148–152

    Article  CAS  Google Scholar 

  132. Segal L, Creely JJ, Markin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  133. Ant-Wuorinen O, Visapaa OA (1962) X-ray diffractometric method for determination of the crystallinity of cellulose. Norelco Rep 9:47–52

    CAS  Google Scholar 

  134. Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45:967–979

    Article  CAS  Google Scholar 

  135. Krischner H (1980) Einführung in die Röntgenfeinstrukturanalyse, Friedr. Wieweg Sohn, Braunschweig, p 28, 29, 43

    Google Scholar 

  136. Hofmann D, Fink HP, Philipp B (1989) Lateral crystallite size and lattice distortions in cellulose II samples of different origin. Polymer 30:237–241

    Article  CAS  Google Scholar 

  137. Kasai K, Kakudo M (2005) X-ray diffraction by macromolcules. Springer, Berlin, p 163

    Google Scholar 

  138. Chandrasekaran R (1997) Molecular architecture of polysaccharide helices in oriented fibers. In: Horton D (ed) Advances in carbohydrate chemistry and biochemistry. Academic Press, San Diego, pp 311–439

    Google Scholar 

  139. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science (Washington, DC, United States) 223(4633):283–285

    Google Scholar 

  140. VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  141. Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state carbon-13 nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22:1615–1617

    Article  CAS  Google Scholar 

  142. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  143. Stipanovic A, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9:851–857

    Article  CAS  Google Scholar 

  144. Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278

    Article  CAS  Google Scholar 

  145. Dudley RL, Fyfe CA, Stephenson PJ, Deslandes Y, Hamer GK, Marchessault RH (1983) High-resolution carbon-13 CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105:2469–2472

    Article  CAS  Google Scholar 

  146. Isogai A, Usuda M, Kato T, Uryu T, Atallah RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  147. Gessler K, Krauss N, Steiner T, Betzl C, Sarko A, Saenger W (1995) β-d-Cellotetraose hemihydrate as a structural model for cellulose II. An X-ray diffraction study. J Am Chem Soc 117:11397–11406

    Article  CAS  Google Scholar 

  148. Raymond S, Henrissat B, Tran Qui D, Kvick A, Chanzy H (1995) The crystal structure of methyl β-cellotrioside monohydrate 0.25 ethanolate and its relationship to cellulose II. Carbohydr Res 277:209–229

    Article  CAS  Google Scholar 

  149. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  150. Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. J Am Chem Soc 34:1237–1243

    CAS  Google Scholar 

  151. Takai M, Fukuda K, Murata M, Hayashi J (1987) Crystalline polymorphism of cellulose triacetate. In: Kennedy JF, Phillips GO, Williams PA (eds) Wood and cellulosics. Ellis Horwood, Chichester, pp 111–117

    Google Scholar 

  152. Kuppel A, Husemann E, Seifert E, Zugenmaier P (1973) Transformation of triacetyl cellulose I into triacetyl cellulose II and packing of cellulose in native fibers. Kolloid Z Z Polym 251:432–433

    Article  CAS  Google Scholar 

  153. Zugenmaier P (2004) Characterization and physical properties of cellulose acetates. Macromol Symp 208:81–166

    Article  CAS  Google Scholar 

  154. El Seoud OA, Fidale LC, Ruiz N, D’Almeida MLO, Frollini E (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15:371–392

    Google Scholar 

  155. Shinouda HG, Kinawi A, Abdel-Moteleb MM (1978) X-ray diffraction and iodine adsorption of acid modified cellulose fibers. Makromol Chem 179:455–462

    Article  CAS  Google Scholar 

  156. Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65:1724–1725

    Article  CAS  Google Scholar 

  157. Sidiras DK, Koullas DP, Vgenopoulos AG, Koukios EG (1990) Cellulose crystallinity as affected by various technical processes. Cellul Chem Technol 24:309–317

    CAS  Google Scholar 

  158. Tang L-G, Hon DN-S, Pan S-H, Zhu Y-Q, Wang Z, Wag Z-Z (1996) Evaluation of microcrystalline cellulose. I. Changes in ultrastructural characteristics during preliminary acid hydrolysis. J Appl Polym Sci 59:483–488

    Article  CAS  Google Scholar 

  159. Awadel-Karim S, Nazhad MM, Paszner L (1999) Factors affecting crystalline structure of cellulose during solvent purification treatment. Holzforschung 53:1–8

    Article  CAS  Google Scholar 

  160. Chen Y, Stipanovic AJ, Winter WT, Wilson DB, Kim Y-J (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293

    Article  CAS  Google Scholar 

  161. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym 9:735–739

    Article  CAS  Google Scholar 

  162. Kim J, Chen Y, Kang K-S, Park Y-B, Schwartz M (2008) Magnetic field effect for cellulose nanofiber alignment. J Appl Phys. 104:096104/1–096104/3

    Google Scholar 

  163. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647

    Article  CAS  Google Scholar 

  164. Nishimura H, Sarko A (1987) Mercerization of cellulose. III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866

    Article  CAS  Google Scholar 

  165. Nishimura H, Sarko A (1987) Mercerization of cellulose. IV. Mechanism of mercerization and crystallite sizes. J Appl Polym Sci 33:867–874

    Article  CAS  Google Scholar 

  166. Bober HL, Cuculo JA, Tucker PA (1987) Effects of ammonia/ammonium thiocyanate on cotton fabric. J Polym Sci Part A Polym Chem 25:2025–2032

    Article  CAS  Google Scholar 

  167. Pavlov P, Makaztchieva V, Lozanov E (1992) High reactivity of cellulose after high temperature mercerization. Cellul Chem Technol 26:151–160

    CAS  Google Scholar 

  168. Fink HP, Philipp B, Zschunke C, Hayn M (1992) Structural changes of LODP cellulose in the original and mercerized state during enzymatic hydrolysis. Acta Polym 43:270–274

    Article  CAS  Google Scholar 

  169. Sao KP, Samantaray BK, Bhattacherjee S (1996) X-ray line profile analysis in alkali-treated ramie fiber. J Appl Polym Sci 60:919–922

    Article  CAS  Google Scholar 

  170. Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N, N-dimethylacetamide solvent system. Biomacromolecules 6:2638–2647

    Article  CAS  Google Scholar 

  171. Günzler H, Gremlich H-U (2002) IR Spectroscopy: an introduction. Wiley-VCH, New York

    Google Scholar 

  172. Wartewig S (2003) IR and Raman spectroscopy: fundamental processing. Wiley-VCH, New York

    Book  Google Scholar 

  173. Krasovskii AN, Polyakov DN, Gorodneva EN, Varlamov AV, Mnatsakanov SS, Iskhakov DM (1992) IR spectra and structure of cellulose triacetate with low content of mono- and disubstituted glucopyranose units. Russ J Appl Chem 65:1528–1534

    Google Scholar 

  174. Krasovskii AN, Polyakov DN, Mnatsakanov SS (1993) Determination of the degree of substitution in highly substituted cellulose esters (acetates). Russ J Appl Chem 66:918–924

    Google Scholar 

  175. Polyakov DN, Krasovskii AN, Gorodneva EN, Varlamov AV, Mnatsakonov SS (1993) Effect of activation and acylation of cellulose on distribution of primary and secondary hydroxyl groups in cellulose triacetate with small content of partially substituted glucopyranose. Russ J Appl Chem 66:1944–1948

    Google Scholar 

  176. Krasovskii AN, Plodistyi AB, Polyakov DN (1996) Distribution of primary and secondary functional groups in highly substituted cellulose acetates, acetomaleates, and acetophthalates based IR absorption spectroscopy data. Russ J Appl Chem 69:1048–1054

    Google Scholar 

  177. Dominguez de Maria P, Martinsson A (2009) Ionic-liquid-based method to determine the degree of esterification in cellulose fibers. Analyst 134:493–496

    Article  CAS  Google Scholar 

  178. Sollinger S, Diamantoglou M (1997) Determination of the degree of sulfonation of sulfonated poly(aryl ether) sulfone. J Raman Spectrosc 28:811–817

    Article  CAS  Google Scholar 

  179. Robert P, Marquis M, Barron C, Guillon F, Saulnier L (2005) FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J Agric Food Chem 53:7014–7018

    Article  CAS  Google Scholar 

  180. O’Connor RT, DuPre EF, McCall ER (1957) Infrared spectrophotometric procedure for analysis of cellulose and modified cellulose. Anal Chem 29:998–1005

    Article  Google Scholar 

  181. Fengel D, Ludwig M (1991) Possibilities and limits of FTIR spectroscopy for the characterization of cellulose. Part 1. Comparison of various cellulose fibers and bacterial-cellulose. Papier (Bingen, Germany) 45:45–51

    Google Scholar 

  182. Fengel D (1991) Possibilities and limits of FTIR spectroscopy for the characterization of cellulose. Part 2. Comparison of various pulps. Papier (Bingen, Germany) 45:97–102

    Google Scholar 

  183. Fengel D (1991) Possibilities and limits of FTIR spectroscopy for the characterization of cellulose. Part 3. Effect of accompanying compounds on the IR spectrum of cellulose. Papier (Bingen, Germany) 46:7–11

    Google Scholar 

  184. Richter U, Krause T, Schempp W (1991) Alkali treatment of cellulose fibers. I. Changes in order evaluated by IR spectroscopy and x-ray diffraction. Angew Makromol Chem 185/186:155–167

    Google Scholar 

  185. Marson GA, El Seoud OA (1999) Cellulose dissolution in lithium chloride/N, N-dimethylacetamide solvent system: relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. J Polym Sci Part A Polym Chem 37:3738–3744

    Article  CAS  Google Scholar 

  186. Khalil EMA, El-Wakil NA (2001) Infrared absorption spectra of cyanoethylated cellulose fibres. Cellul Chem Technol 34:473–479

    Google Scholar 

  187. Xiao D, Hu J, Zhang M, Li M, Wang G, Yao H (2004) Synthesis and characterization of camphorsulfonyl acetate of cellulose. Carbohydr Res 339:1925–1931

    Article  CAS  Google Scholar 

  188. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  189. Fuller MP, Griffiths PR (1978) Diffuse reflectance measurements by infrared Fourier transform spectrometry. Anal Chem 50:1906–1910

    Article  CAS  Google Scholar 

  190. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. J Opt Soc Am 38:448–457

    Article  CAS  Google Scholar 

  191. Schultz TP, McGinnis GD, Bertran MS (1985) Estimation of cellulose crystallinity using Fourier transform infrared spectroscopy and dynamic thermogravimetry. J Wood Chem Technol 5:543–557

    Article  CAS  Google Scholar 

  192. Hulleman SHD, van Hazendonk JM, van Dam JEG (1994) Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier-transform infrared spectroscopy. Carbohydr Res 261:163–172

    Article  CAS  Google Scholar 

  193. Yang CQ, Wang X (1996) Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. II. Comparison of different polycarboxylic acids. J Polym Sci Part A Polym Chem 34:1573–1580

    Article  CAS  Google Scholar 

  194. Yang CQ, Wang X (1997) Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. III. Molecular weight of a crosslinking agent. J Polym Sci Part A Polym Chem 35:557–564

    Article  CAS  Google Scholar 

  195. Ogawa K, Hirai I, Shimasaki C, Yoshimura T, Ono S, Rengakuji S, Nakamura Y, Yamazaki I (1999) Simple determination method of degree of substitution for starch acetate. Bull Chem Soc Jpn 72:2785–2790

    Article  CAS  Google Scholar 

  196. Jandura P, Kokta BV, Riedl B (2000) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS carbon-13 NMR, and x-ray diffraction. J Appl Polym Sci 78:1354–1365

    Article  CAS  Google Scholar 

  197. Mao Z, Yang CQ (2001) IR spectroscopy study of cyclic anhydride as intermediate for ester crosslinking of cotton cellulose by polycarboxylic acids. V. Comparison of 1,2,4-butanetricarboxylic acid and 1,2,3-propanetricarboxylic acid. J Appl Polym Sci 81:2142–2150

    Article  CAS  Google Scholar 

  198. Casarano R, Fidale LC, Lucheti CM, Heinze T, El Seoud OA (2010) Expedient, accurate methods for the determination of the degree of substitution of cellulose carboxylic esters: application of Uv-vis spectroscopy (dye solvatochromism) and FTIR. Carbohydr Polym 83:1285–1292

    Article  CAS  Google Scholar 

  199. Crepy L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. Chemsuschem 2:165–170

    Article  CAS  Google Scholar 

  200. El-Khouly AS, Kenawy E, Safaan AA, Takahashi Y, Hafiz YA, Sonomoto K, Zendo T (2011) Synthesis, characterization and antimicrobial activity of modified cellulose-graft-polyacrylonitrile with some aromatic aldehyde derivatives. Carbohydr Polym 83:346–353

    Article  CAS  Google Scholar 

  201. Cheng HN, Biswas A (2011) Chemical modification of cotton-based natural materials: products from carboxymethylation. Carbohydr Polym 84:1004–1010

    Article  CAS  Google Scholar 

  202. Kaur B, Gur IS, Bhatnagar HL (1987) Thermal degradation studies of cellulose phosphates and cellulose thiophosphates. Angew Makromol Chem 147:157–183

    Article  CAS  Google Scholar 

  203. Pohl M, Heinze T (2008) Novel biopolymer structures synthesized by dendronization of 6-deoxy-6-aminopropargyl cellulose. Macromol Rapid Commun 29:1739–1745

    Article  CAS  Google Scholar 

  204. Hasani M, Westman G, Potthast A, Rosenau T (2009) Cationization of cellulose by using N-oxiranylmethyl-N-methylmorpholinium chloride and 2-oxiranylpyridine as etherfication agents. J Appl Polym Sci 114:1449–1456

    Article  CAS  Google Scholar 

  205. Zhang C, Price LM, Daly WH (2006) Synthesis and characterization of a trifunctional aminoamide cellulose derivative. Biomacromolecules 7:139–145

    Article  CAS  Google Scholar 

  206. Kostag M, Koehler S, Liebert T, Heinze T (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294-II:96–106

    Google Scholar 

  207. Kondo T, Sawatari C (1996) A Fourier transform infrared spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399

    Article  CAS  Google Scholar 

  208. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  209. Gavira JM, Hernanz A, Bratu I (2003) Dehydration of & β-cyclodextrin: an IR & ν(OH) band profile analysis. Vib Spectrosc 32:137–146

    Article  CAS  Google Scholar 

  210. Hurtubise F, Krässig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy. Anal Chem 32:177–181

    Article  CAS  Google Scholar 

  211. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  212. El-Saied H, Hanna AA, Ibrahem AA (1985) Comparative study of various physical methods for the determination of cellulose crystallinity. Indian Pulp Pap 40:7, 9–10, 24

    Google Scholar 

  213. Iyer PB, Sreenivasan S, Chidambareswaran PK, Patil NB, Sundaram V (1991) Induced crystallization of cellulose in never-dried cotton fibers. J Appl Polym Sci 42:1751–1757

    Article  CAS  Google Scholar 

  214. He J, Cui S, Wang S-Y (2008) Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J Appl Polym Sci 107:1029–1038

    Article  CAS  Google Scholar 

  215. Puleo AC, Paul DR, Kelly SS (1989) The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J Membr Sci 47:301–332

    Article  CAS  Google Scholar 

  216. Normakhamatov NS, Turaev AS, Burkhanova ND (2009) Cellulose supramolecular structure changes during chemical activation and sulfation. Holzforschung 63:40–46

    Article  CAS  Google Scholar 

  217. Miyamoto T, Sato Y, Shibata T, Tanahashi M, Inagaki H (1985) Carbon-13 NMR spectral studies on the distribution of substituents in water-soluble cellulose acetate. J Polym Sci Polym Chem Ed 23:1373–1383

    Article  CAS  Google Scholar 

  218. Krasovskii AN, Polyakov DN, Mnatsakanov SS (1993) Determination of the degree of substitution in highly substituted cellulose esters (acetates). Zh Prikl Khim 66:1118–1126

    CAS  Google Scholar 

  219. Krasovskii AN, Plodistyi AB, Polyakov DN (1996) Distribution of primary and secondary functional groups in highly substituted cellulose acetates, acetomaleates, and acetophthalates based IR absorption spectroscopy data. Zh Prikl Khim 69:1183–1189

    CAS  Google Scholar 

  220. Braun S, Kalinowski HO, Berger S (2004) 200 and more basic NMR experiments. Wiley-VCH, Weinheim, p 128

    Google Scholar 

  221. Sei T, Ishitani K, Suzuki R, Ikematsu K (1985) Distribution of acetyl group in cellulose acetate as determined by nuclear magnetic resonance analysis. Polym J 17:1065–1069

    Article  CAS  Google Scholar 

  222. Iyer PB, Iyer KRK, Patil NB (1976) An infrared technique for the quick analysis of cotton-polyester. J Appl Polym Sci 20:591–595

    Article  CAS  Google Scholar 

  223. Iyer PB, Iyer KRK, Patil NB (1978) Quantitative analysis of wool/cotton blends: an infrared method. J Appl Polym Sci 22:2677–2683

    Article  CAS  Google Scholar 

  224. Fidale LC, Lima PM Jr, Hortencio LMA, Pires PAR, Heinze T, El Seoud OA (2012) Employing perichromism for probing the properties of carboxymethyl cellulose films: an expedient, accurate method for the determination of the degree of substitution of the biopolymer derivative. Cellulose 19:151–159

    Article  CAS  Google Scholar 

  225. Becker ED (1999) High resolution NMR, 3rd edn. Academic Press, New York, NY, p 424

    Google Scholar 

  226. Ernst RR, Bodenhausen G, Wokaun A (1990) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, USA

    Google Scholar 

  227. Günther H (1995) NMR spectroscopy: basic principles, concepts, and applications in chemistry, 2nd edn. Wiley, USA

    Google Scholar 

  228. http://www.cis.rit.edu/htbooks/nmr/ by Joseph P. Hornak

  229. Sternberg U, Koch FT, Prieß W, Witter R (2003) Crystal structure refinements of cellulose polymorphs using solid state 13C chemical shifts. Cellulose 10:189–199

    Article  CAS  Google Scholar 

  230. Witter R, Sternberg U, Hesse S, Kondo T, Koch FT, Ulrich AS (2006) 13C chemical shift constrained crystal structure refinement of cellulose Iα and its verification by NMR anisotropy experiments. Macromolecules 39:6125–6132

    Article  CAS  Google Scholar 

  231. Unger EW, Fink HP, Philipp B (1995) Morphometric investigation of the swelling dissolution process of cellulose fibers in FeTNa and LiCl/dimethylacetamide. Papier (Darmstadt) 49(6):297–307

    CAS  Google Scholar 

  232. Evans R, Newman RH, Roick UC, Suckling ID, Wallis AFA (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state NMR results. Holzforschung 49:498–504

    Article  CAS  Google Scholar 

  233. Hesse S (2005) Strukturanalyse modifizierter Bakteriencellulosen verschiedener Subspezies des A. xylinum mittels Festkörper-Kernresonanz-Spektroskopie. Ph.D. thesis, University of Jena, Germany

    Google Scholar 

  234. Debzi EM, Chanzy H, Sugiyama J, Tekely P, Excoffier G (1991) The Iα → Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  235. Yamamoto H, Horii F (1993) CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317

    Article  CAS  Google Scholar 

  236. Yamamoto H, Horii F (1994) In situ crystallization of bacterial cellulose. I. Influences of polymeric additives, stirring and temperature on the formation of celluloses Iα and Iβ as revealed by cross polarization/magic angle spinning (CP/MAS) carbon-13 NMR spectroscopy. Cellulose 1:57–60

    Article  CAS  Google Scholar 

  237. Larsson PT, Westermark U, Iversen T (1995) Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydr Res 278:339–343

    Article  CAS  Google Scholar 

  238. Newman RH (1999) Estimation of the relative proportions of cellulose Iα and Iβ in wood by carbon-13 NMR spectroscopy. Holzforschung 53:335–340

    Article  CAS  Google Scholar 

  239. Horii F, Yamamoto H, Kitamaru R (1987) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  240. Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198

    Article  CAS  Google Scholar 

  241. Kono H, Erata T, Takai M (2003) Determination of the through-bond carbon-carbon and carbon-proton connectivities of the native celluloses in the solid state. Macromolecules 36:5131–5138

    Article  CAS  Google Scholar 

  242. Kono H, Numata Y (2006) Structural investigation of cellulose Iα and Iβ by two-dimensional RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain. Cellulose 13:317–326

    Article  CAS  Google Scholar 

  243. Horii F, Hirai A, Kitamaru R (1982) Solid-state high-resolution carbon-13 NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170

    Article  CAS  Google Scholar 

  244. Kunze J, Fink HP (1999) Characterization of cellulose and cellulose derivatives by high resolution solid state 13C-NMR spectroscopy. Papier (Bingen, Germany) 53:753–764

    Google Scholar 

  245. Atalla RH, VanderHart DL (1999) The role of solid-state carbon-13 NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19

    Article  CAS  Google Scholar 

  246. VanderHart DL, Campbell GC (1998) Off-resonance proton decoupling on-resonance and near-resonance. A close look at 13C CPMAS linewidths in solids for rigid, strongly coupled carbons under CW proton decoupling. J Magn Reson 134:88–112

    Article  CAS  Google Scholar 

  247. Yamamoto H, Horii F, Hirai A (2006) Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose 13:327–342

    Article  CAS  Google Scholar 

  248. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) CP/MAS 13C-NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360

    Article  CAS  Google Scholar 

  249. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS carbon-13 NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  250. Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS carbon-13 NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15:31–40

    Article  CAS  Google Scholar 

  251. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using carbon-13 NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  252. Kono H, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 2. Complete assignment of the 13C resonance for the ring carbons of cellulose triacetate polymorphs. J Am Chem Soc 124:7512–7518

    Article  CAS  Google Scholar 

  253. Hesse-Ertelt S, Witter R, Ulrich AS, Kondo T, Heinze T (2008) Spectral assignments and anisotropy data of cellulose Iα: 13C-NMR chemical shift data of cellulose Iα determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains. Magn Reson Chem 46:1030–1036

    Article  CAS  Google Scholar 

  254. Hesse S, Kondo T (2005) Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates. Carbohydr Polym 60:457–465

    Article  CAS  Google Scholar 

  255. Hesse-Ertelt S, Heinze T, Togawa E, Kondo T (2010) Structure elucidation of uniformly 13C-labeled bacterial celluloses from different Gluconacetobacter xylinus strains. Cellulose 17:139–151

    Article  CAS  Google Scholar 

  256. Fyfe CA, Dudley RL, Stephenson PJ, Deslandes Y, Hamer GK, Marchessault RH (1983) Application of high-resolution solid-state NMR with cross-polarization magic-angle spinning (CP/MAS) techniques to cellulose chemistry. J Macromol Sci Rev Macromol Chem Phys C23:187–216

    Article  CAS  Google Scholar 

  257. Kono H, Erata T, Takai M (2003) Complete assignment of the CP/MAS 13C NMR spectrum of cellulose IIII. Macromolecules 36:3589–3592

    Article  CAS  Google Scholar 

  258. Kono H, Numata Y, Erata T, Takai M (2004) 13C and 1H resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316

    Article  CAS  Google Scholar 

  259. Wada M, Heux L, Nishiyama Y, Langan P (2009) X-ray crystallographic, scanning microprobe X-ray diffraction, and cross-polarized/magic angle spinning 13C NMR studies of the structure of cellulose IIIII. Biomacromolecules 10:302–309

    Article  CAS  Google Scholar 

  260. Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631

    Article  CAS  Google Scholar 

  261. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  262. Fischer S, Voigt W, Fischer K (1999) The behavior of cellulose in hydrated melts of the composition LiX∙nH2O (X = I, NO3 , CH3COO, ClO4 ). Cellulose 6:213–219

    Article  CAS  Google Scholar 

  263. Nehls I, Wagenknecht W, Philipp B, Stscherbina D (1994) Characterization of cellulose and cellulose derivatives in solution by high resolution carbon-13 NMR spectrometry. Prog Polym Sci 19:29–78

    Article  CAS  Google Scholar 

  264. Hasegawa M, Isogai A, Onabe F, Usada M (1992) Dissolving states of cellulose and chitosan in trifluoroacetic acid. J Appl Polym Sci 45:1857–1863

    Article  CAS  Google Scholar 

  265. Yanagisawa M, Shibata I, Isogai A (2004) SEC-MALLS analysis of cellulose using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 11:169–176

    Article  CAS  Google Scholar 

  266. Fujimoto T, Takahashi S, Tsuji M, Miyamoto T, Inagaki H (1986) Reaction of cellulose with formic acid and stability of cellulose formate. J Polym Sci Part C Polym Lett 24:495–501

    Article  CAS  Google Scholar 

  267. Koehler S, Liebert T, Heinze T (2009) Ammonium-based cellulose solvents suitable for homogeneous etherification. Macromol Biosci 9:836–841

    Article  CAS  Google Scholar 

  268. Meiland M, Heinze T, Guenther W, Liebert T (2010) Studies on the boronation of methyl-β-d-cellobioside—a cellulose model. Carbohydr Res 345:257–263

    Article  CAS  Google Scholar 

  269. Meiland M, Heinze T, Guenther W, Liebert T (2009) Seven membered ring boronates at trans-diol moieties of carbohydrates. Tetrahedron Lett 50:469–472

    Article  CAS  Google Scholar 

  270. Flugge LA, Blank JT, Petillo PA (1999) Isolation, modification, and NMR assignments of a series of cellulose oligomers. J Am Chem Soc 121:7228–7238

    Article  CAS  Google Scholar 

  271. Jiang N, Pu Y, Ragauskas AJ (2010) Rapid determination of lignin content via direct dissolution and 1H NMR analysis of plant cell. Chemsuschem 3:1285–1289

    Article  CAS  Google Scholar 

  272. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-N-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 1271–1273

    Google Scholar 

  273. www.otto-diels-institut.de/studium/spektroskopie/FDS_2D-NMR1–08.pdf: 2 dimensionale-NMR Spektroskopie F.D. Sönnichsen Mittwoch, 22 Oct 2008

  274. Fischer S, Leipner H, Thümmler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236

    Article  CAS  Google Scholar 

  275. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Structure analysis of polysaccharide esters

    Google Scholar 

  276. Goodlett VW, Dougherty JF, Patton HW(1971) Characterization of cellulose acetates by nuclear magnetic resonance. J Polym Sci Part A-1 Polym Chem 9:155–161

    Google Scholar 

  277. Kamide K, Okajima K (1981) Determination of distribution of O-acetyl group in trihydric alcohol units of cellulose acetate by carbon-13 nuclear magnetic resonance analysis. Polym J (Tokyo) 13:127–133

    Article  CAS  Google Scholar 

  278. Hikichi K, Kakuta Y, Katoh T (1995) 1H NMR study on substituent distribution of cellulose diacetate. Polym J (Tokyo) 27:659–663

    Article  CAS  Google Scholar 

  279. Buchanan CM, Hyatt JA, Lowman DW (1987) 2D-NMR of polysaccharides: spectral assignments of cellulose triesters. Macromolecules 20:2750–2754

    Article  CAS  Google Scholar 

  280. Gagnaire DY, Taravel FR, Vignon MR (1976) Attribution of carbon-13 nuclear magnetic resonance signals to peracetyl disaccharides in the d-glucose series. Carbohydr Res 51:157–168

    Article  CAS  Google Scholar 

  281. Gagnaire DY, Taravel FR, Vignon MR (1982) Two-dimensional J spectroscopy: proton NMR of polysaccharides. Application to capsular heteroglycans and labeled cellulose triacetate. Macromolecules 15:126–129

    Article  CAS  Google Scholar 

  282. Capon B, Rycroft DS, Thomson JW (1979) The carbon-13 NMR spectra of peracetylated cello-oligosaccharides. Carbohydr Res 70:145–149

    Article  CAS  Google Scholar 

  283. Miyamoto T, Sato Y, Shibata T, Inagaki H, Tanahashi M (1984) Carbon-13 nuclear magnetic resonance studies of cellulose acetate. J Polym Sci Polym Chem Ed 22:2363–2370

    Article  CAS  Google Scholar 

  284. Kamide K, Okajima K, Kowsaka K, Matsui T (1987) Solubility of cellulose acetate prepared by different methods and its correlationships with average acetyl group distribution on glucopyranose units. Polym J (Tokyo) 19:1405–1412

    Article  CAS  Google Scholar 

  285. Kowsaka K, Okajima K, Kamide K (1986) Further study on the distribution of substituent group in cellulose acetate by carbon-13 and proton NMR analysis: assignment of carbonyl carbon peaks. Polym J (Tokyo) 18:843–849

    Article  CAS  Google Scholar 

  286. Kamide K, Saito M (1994) Recent advances in molecular and supermolecular characterization of cellulose and cellulose derivatives. Macromol Symp 83:233–271

    Article  CAS  Google Scholar 

  287. Buchanan CM, Edgar KJ, Hyatt JA, Wilson AK (1991) Preparation of cellulose [1-carbon-13]acetates and determination of monomer composition by NMR spectroscopy. Macromolecules 24:3050–3059

    Article  CAS  Google Scholar 

  288. Reuben J, Conner HT (1983) Analysis of the carbon-13 NMR spectrum of hydrolyzed O-(carboxymethyl)cellulose: monomer composition and substitution patterns. Carbohydr Res 115:1–13

    Article  CAS  Google Scholar 

  289. Tezuka Y, Tsuchiya Y, Shiomi T (1996) Proton and carbon-13 NMR structural study on cellulose and polysaccharide derivatives with carbonyl groups as a sensitive probe. Part II. Carbon-13 NMR determination of substituent distribution in carboxymethyl cellulose by use of its peresterified derivatives. Carbohydr Res 291:99–108

    Article  CAS  Google Scholar 

  290. Capitani D, Porro F, Segre AL (2000) High field NMR analysis of the degree of substitution in carboxymethyl cellulose sodium salt. Carbohydr Polym 42:283–286

    Article  CAS  Google Scholar 

  291. Tezuka Y, Tsuchiya Y (1995) Determination of substituent distribution in cellulose acetate by means of a carbon-13 NMR study on its propanoated derivative. Carbohydr Res 273:83–91

    Article  CAS  Google Scholar 

  292. Deus C, Friebolin H, Siefert E (1991) Partially acetylated cellulose. Synthesis and determination of the substituent distribution via proton NMR spectroscopy. Makromol Chem 192:75–83

    Article  CAS  Google Scholar 

  293. Lee CK, Gray GR (1995) Analysis of positions of substitution of O-acetyl groups in partially O-acetylated cellulose by the reductive-cleavage method. Carbohydr Res 269:167–174

    Article  CAS  Google Scholar 

  294. Schaller J, Heinze T (2005) Studies on the synthesis of 2,3-O-hydroxyalkyl ethers of cellulose. Macromol Biosci 5:58–63

    Article  CAS  Google Scholar 

  295. Grote C, Heinze T (2005) Starch derivatives of high degree of functionalization 11: studies on alternative acylation of starch with long-chain fatty acids homogeneously in N, N-dimethyl acetamide/LiCl. Cellulose 12:435–444

    Article  CAS  Google Scholar 

  296. Hornig S (2005) Selbststrukturierende Funktionspolymere durch chemische Modifizierung von Dextranen. Diploma thesis, University of Jena

    Google Scholar 

  297. Hussain MA, Liebert T, Heinze T (2004) Acylation of cellulose with N, N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25:916–920

    Article  CAS  Google Scholar 

  298. Liebert T, Hussain MA, Heinze T (2005) Structure determination of cellulose esters via subsequent functionalization and NMR spectroscopy. Macromol Symp 223:79–92

    Article  CAS  Google Scholar 

  299. Hedenström M, Wiklund-Lindström S, Öman T, Lu F, Gerber L, Schatz P, Sundberg B, Ralph J (2009) Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Mol Plant 2(933):942

    Google Scholar 

  300. Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35:535–544

    Article  CAS  Google Scholar 

  301. Baar A, Kulicke W-M, Szablikowski K, Kiesewetter R (1994) Nuclear magnetic resonance spectroscopic characterization of carboxymethyl cellulose. Macromol Chem Phys 195:1483–1492

    Article  CAS  Google Scholar 

  302. Buchanan CM, Hyatt JA, Lowman DW (1989) Supramolecular structure and microscopic conformation of cellulose esters. J Am Chem Soc 111:7312–7319

    Article  CAS  Google Scholar 

  303. Nunes T, Burrows HD, Bastos M, Feio G, Gil MH (1995) 13C nuclear magnetic resonance studies of cellulose ester derivatives in solution, powder and membranes. Polymer 36:479–485

    Article  CAS  Google Scholar 

  304. Iijima H, Kowsaka K, Kamide K (1992) Determination of sequence distribution of substituted and unsubstituted glucopyranose units in water-soluble cellulose acetate chain as revealed by enzymic degradation. Polym J (Tokyo) 24:1077–1097

    Article  CAS  Google Scholar 

  305. King AWT, Jalomäki J, Granström M, Argyropoulos DS, Heikkinen S, Kilpelainen I (2010) A new method for rapid degree of substitution and purity determination of chloroform-soluble cellulose esters, using 31P NMR. Anal Methods 2:1499–1505

    Article  CAS  Google Scholar 

  306. KulickeW-M Otto M, Baar A (1993) Improved NMR characterization of high-molecular-weight polymers and polyelectrolytes through the use of preliminary ultrasonic degradation. Makromol Chem 194:751–765

    Article  Google Scholar 

  307. Iwata T, Azuma J, Okamura K, Muramoto M, Chun B (1992) Preparation and NMR assignments of cellulose mixed esters regioselectively substituted by acetyl and propanoyl groups. Carbohydr Res 224:277–283

    Article  CAS  Google Scholar 

  308. McNair HM, Miller JM (1997) Basic gas chromatography. Wiley-Interscience, New York. ISBN 0–471-17260-X

    Google Scholar 

  309. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley. ISBN: 978–0-470-16754-0

    Google Scholar 

  310. Snyder LT, Glajch JL, Kirkland JJ (1988) Practical HPLC method development, 2nd edn. Wiley, USA

    Google Scholar 

  311. Cunico RL, Gooding KM, Wehr T (1998) Basic HPLC and CE of biomolecules. Bay Bioanalytical Laboratory

    Google Scholar 

  312. Dong MW (2006) Modern HPLC for practicing scientists. Wiley. ISBN 978–0-471-72789-7

    Google Scholar 

  313. Mischnick P, Momcilovic D (2010) Chemical structure analysis of starch and cellulose derivatives. In: Horton D (ed) Advances in carbohydrate chemistry and biochemistry, vol 64. Elsevier, Oxford, pp 117–210

    Google Scholar 

  314. Rolf D, Gray GR (1982) Reductive cleavage of glycosides. J Am Chem Soc 104:3539–3541

    Article  CAS  Google Scholar 

  315. Rosell K-G (1988) Distribution of substituents in methylcellulose. J Carbohydr Chem 7:525–536

    Article  CAS  Google Scholar 

  316. Erler U, Mischnick P, Stein A, Klemm D (1992) Determination of the substitution patterns of cellulose methyl ethers by HPLC and gas-liquid chromatography—comparison of methods. Polym Bull 29:349–356

    Article  CAS  Google Scholar 

  317. Gohdes M, Mischnick P, Wagenknecht W (1997) Methylation analysis of cellulose sulfates. Carbohydr Polym 33:163–168

    Article  CAS  Google Scholar 

  318. Gohdes M, Mischnick P (1998) Determination of the substitution pattern in the polymer chain of cellulose sulfates. Carbohydr Res 309:109–115

    Article  CAS  Google Scholar 

  319. Kragten EA, Kamerling JP, Vliegenthart JFG (1992) Composition analysis of carboxymethylcellulose by high-pH anion-exchange chromatography with pulsed amperometric detection. J Chromatogr 623:49–53

    Article  CAS  Google Scholar 

  320. Kragten EA, Kamerling JP, Vliegenthart JFG, Botter H, Batelaan JG (1992) Composition analysis of sulfoethylcelluloses by high-pH anion exchange chromatography with pulsed amperometric detection. Carbohydr Res 233:81–86

    Article  CAS  Google Scholar 

  321. Lee DS, Perlin AS (1984) Formation, and stereochemistry, of 1,2-O-(1-methyl-1,2-ethanediyl)-d-glucose acetals formed in the acid-catalyzed hydrolysis of O-(2-hydroxypropyl)cellulose. Carbohydr Res 126:101–114

    Article  CAS  Google Scholar 

  322. Arisz PW, Kauw HJJ, Boon JJ (1995) Substituent distribution along the cellulose backbone in O-methylcelluloses using GC and FAB-MS for monomer and oligomer analysis. Carbohydr Res 271:1–14

    Article  CAS  Google Scholar 

  323. Heinze T (1998) Neue Funktionspolymere aus Cellulose: neue Synthesekonzepte, Strukturaufklärung und Eigenschaften. Shaker Verlag, Aachen, Germany. ISBN 3-8265-3300-3

    Google Scholar 

  324. Heinze T, Erler U, Nehls I, Klemm D (1994) Determination of the substituent pattern of heterogeneously and homogeneously synthesized carboxymethyl cellulose by using high-performance liquid chromatography. Angew Makromol Chem 215:93–106

    Article  CAS  Google Scholar 

  325. Heinze T, Pfeiffer K, Liebert T, Heinze U (1999) Effective approaches for estimating the functionalization pattern of carboxymethyl starch of different origin. Starch/Staerke 51:11–16

    Article  CAS  Google Scholar 

  326. Gelman RA (1982) Characterization of carboxymethylcellulose: distribution of substituent groups along the chain. J Appl Polym Sci 27:2957–2964

    Article  CAS  Google Scholar 

  327. Ma Z, Zhang W, Li Z (1989) Study on the characterization of distribution of substituents along the chain of carboxymethyl cellulose. Chin J Polym Sci 7:45–53

    CAS  Google Scholar 

  328. Martinez-Richa A, Munoz-Alarcon H, Joseph-Nathan P (1991) Studies on enzymatic resistance and molecular structure by carbon-13 NMR of cellulosic ethers. J Appl Polym Sci 44:347–352

    Article  CAS  Google Scholar 

  329. Heinze U, Schaller J, Heinze T, Horner S, Saake B, Puls J (2000) Characterization of regioselectively functionalized 2,3-O-carboxymethyl cellulose by enzymic and chemical methods. Cellulose 7:161–175

    Article  CAS  Google Scholar 

  330. Horner S, Puls J, Saake B, Klohr E-A, Thielking H (1999) Enzyme-aided characterization of carboxymethyl cellulose. Carbohydr Polym 40:1–7

    Article  CAS  Google Scholar 

  331. Puls J, Horner S, Kruse T, Saake B, Heinze T (1998) Enzyme-aided characterization of carboxymethyl cellulose with conventional and novel distribution of functional groups. Papier (Heidelberg, Germany) 52:743–748

    Google Scholar 

  332. Urbanski J (1992) Analysis and characterization of cellulose and its derivatives. Appl Polym Anal Charact 2:345–361

    CAS  Google Scholar 

  333. Mischnick P, Heinrich J, Gohdes M, Wilke O, Rogmann N (2000) Structure analysis of 1,4-glucan derivatives. Macromol Chem Phys 201:1985–1986

    Article  CAS  Google Scholar 

  334. De Belder AN, Norrman B (1968) The distribution of substituents in partially acetylated dextran. Carbohydr Res 8:1–6

    Article  Google Scholar 

  335. Bouveng HO (1961) Arabinogalactoglycans. V. Barry degradation of the arabinogalactoglycans from Western larch—a kinetic study of the mild acid hydrolysis of arabinogalactoglycan A. Acta Chem Scand 15:78–86

    Article  CAS  Google Scholar 

  336. Liebert T, Pfeiffer K, Heinze T (2005) Carbamoylation applied for structure determination of cellulose derivatives. Macromol Symp 223:93–108

    Article  CAS  Google Scholar 

  337. Bjorndal H, Lindberg B, Rosell KG (1971) Distribution of substituents in partially acetylated cellulose. J Polym Sci Polym Symp 36:523–527

    Article  Google Scholar 

  338. Franz G (1991) Polysaccharide. Springer, Berlin

    Book  Google Scholar 

  339. Prehm P (1980) Methylation of carbohydrates by methyl trifluoromethanesulfonate in trimethyl phosphate. Carbohydr Res 78:372–374

    Article  CAS  Google Scholar 

  340. Mischnick P (1991) Determination of the substitution pattern of cellulose acetates. J Carbohydr Chem 10:711–722

    Article  CAS  Google Scholar 

  341. Yu N, Gray GR (1998) Analysis of the positions of substitution of acetate and propionate groups in cellulose acetate-propionate by the reductive-cleavage method. Carbohydr Res 313:29–36

    Article  CAS  Google Scholar 

  342. Yu N, Gray GR (1998) Analysis of the positions of substitution of acetate and butyrate groups in cellulose acetate butyrate by the reductive-cleavage method. Carbohydr Res 312:225–231

    Article  CAS  Google Scholar 

  343. D’Ambra AJ, Rice MJ, Zeller SG, Gruber PR, Gray GR (1988) Analysis of positions of substitution of O-methyl or O-ethyl groups in partially methylated or ethylated cellulose by the reductive-cleavage method. Carbohydr Res 177:111–116

    Article  Google Scholar 

  344. Garegg PJ, Lindberg B, Konradsson P, Kvarnstrom I (1988) Hydrolysis of glycosides under reducing conditions. Carbohydr Res 176:145–148

    Article  CAS  Google Scholar 

  345. Stevenson TT, Furneaux RH (1991) Chemical methods for the analysis of sulfated galactans from red algae. Carbohydr Res 210:277–298

    Article  CAS  Google Scholar 

  346. Liebert T, Schnabelrauch M, Klemm D, Erler U (1994) Readily hydrolyzable cellulose esters as intermediates for the regioselective derivatization of cellulose. Part II Soluble, highly substituted cellulose trifluoroacetates. Cellulose 1:249–258

    Article  CAS  Google Scholar 

  347. Mischnick-Lubbecke P, König WA (1989) Determination of the substitution pattern of modified polysaccharides. Part I. Benzyl starches. Carbohydr Res 185:113–118

    Article  CAS  Google Scholar 

  348. Mischnick P, Lange M, Gohdes M, Stein A, Petzold K (1995) Trialkylsilyl derivatives of cyclomaltoheptaose, cellulose, and amylose: rearrangement during methylation analysis. Carbohydr Res 277:179–187

    Article  CAS  Google Scholar 

  349. Gross JH (2004) Mass spectrometry: a textbook. Springer, Heidelberg. ISBN 3-540-40739

    Google Scholar 

  350. Liebert T, Seifert M, Heinze T (2008) Efficient method for the preparation of pure, water-soluble cellodextrines. Macromol Symp 262:140–149

    Article  CAS  Google Scholar 

  351. Hofmeister GE, Zhou Z, Leary JA (1991) Linkage position determination in lithium-cationized disaccharides: tandem mass spectrometry and semiempirical calculations. J Am Chem Soc 113:5964–5970

    Article  CAS  Google Scholar 

  352. Adden R, Mischnick P (2005) A novel method for the analysis of the substitution pattern of O-methyl-α- and β-1,4-glucans by means of electrospray ionization-mass spectrometry/collision induced dissociation. Int J Mass Spectrom 242:63–73

    Article  CAS  Google Scholar 

  353. Ciucanu I (2006) Per-O-methylation reaction for structural analysis of carbohydrates by mass spectrometry. Anal Chim Acta 576:147–155

    Article  CAS  Google Scholar 

  354. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J 5:397–409

    Article  CAS  Google Scholar 

  355. Arisz PW, Boon J (1995) Pyrolysis chemical ionization mass spectrometry of cellulose ethers. J Polym Sci Part A Polym Chem 33:2855–2864

    Article  CAS  Google Scholar 

  356. Heinrich J, Mischnick P (1999) Determination of the substitution pattern in the polymer chain of cellulose acetates. J Polym Sci Part A Polym Chem 37:3011–3016

    Article  CAS  Google Scholar 

  357. Mischnick P, Niedner W, Adden R (2005) Possibilities of mass spectrometry and tandem-mass spectrometry in the analysis of cellulose ethers. Macromol Symp 223:67–77

    Article  CAS  Google Scholar 

  358. Adden R, Müller R, Brinkmalm G, Ehrler R, Mischnick P (2006) Comprehensive analysis of the substituent distribution in hydroxyethyl celluloses by quantitative MALDI-ToF-MS. Macromol Biosci 6:435–444

    Article  CAS  Google Scholar 

  359. Pastorova I, Botto RE, Arisz PW, Boon JJ (1994) Cellulose char structures: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr Res 262:27–47

    Article  CAS  Google Scholar 

  360. Carollo P, Grospietro B (2004) Plastic materials. Macromol Symp 208:335–351

    Article  CAS  Google Scholar 

  361. Kamide K, Terakawa T, Miyazaki Y (1979) The viscometric and light-scattering determination of dilute solution properties of cellulose diacetate. Polym J 11:285–298

    Article  CAS  Google Scholar 

  362. Kamide K, Miyazaki Y, Abe T (1979) Dilute solution properties and unperturbed chain dimension of cellulose triacetate. Polym J 11:523–538

    Article  CAS  Google Scholar 

  363. Glasser WG, Samaranayake G, Dumay M, Dave V (1995) Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanois acid. J Polym Sci Part B Polym Phys 33:2045–2054

    Article  CAS  Google Scholar 

  364. Sealey JS, Samaranayake G, Todd JG, Glasser WG (1996) Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci Part B Polym Phys 34:1613–1620

    Article  CAS  Google Scholar 

  365. Fidale LC, Iβbrücker C, Silva PL, Lucheti CM, Heinze T, El Seoud OA (2010) Probing the dependence of the properties of cellulose acetates and their films on the degree of biopolymer substitution: use of solvatochromic indicators and thermal analysis. Cellulose 17:937–951

    Google Scholar 

  366. Crompton TR (1993) Practical polymer analysis. Plenum Press, New York, pp 595–664

    Book  Google Scholar 

  367. Campbell D, Pethrich RA, White JR (2000) Polymer characterization: physical techniques. Stanley Thornes, Cheltenham, pp 362–407

    Google Scholar 

  368. Chartoff RP (2008) Thermal analysis of polymers. Characterization and analysis of polmers. Wiley Interscience, Hoboken, pp 805–881

    Google Scholar 

  369. Hill JO (1991) For better thermal analysis and calorimetry, ICTA, 3rd edn. CPC Reprographics, Portsmouth

    Google Scholar 

  370. Sircar AK (1982) Characterization of elastomers by thermal analysis. J Sci Ind Res 41:536–560

    CAS  Google Scholar 

  371. Savasci OT, Petkim Baysal SM (1986) Determination of effectivenesses of 2,6-di-tert-butyl-p-catechecol, mixed tri(mono- and dinonylphenyl) phosphite and their mixtures as antioxidants for CBR [cis-butadiene rubber] by DSC. J Appl Polym Sci 31:2157–2169

    Article  CAS  Google Scholar 

  372. Gallagher PK (1993) Thermal analysis. Adv Anal Geochem 1:211–257

    CAS  Google Scholar 

  373. Brown ME (1988) Introduction to thermal analysis. Chapman and Hall, London

    Book  Google Scholar 

  374. Häggkvist M, Li T-Q, Ödberg L (1998) Effects of drying and pressing on the pore structure in the cellulose fiber wall studied by proton and deuteron NMR relaxation. Cellulose 5:33–49

    Article  Google Scholar 

  375. Crawshaw J, Cameron RE (2000) A small X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698

    Article  CAS  Google Scholar 

  376. Berggren J, Alderborn G (2001) Drying behavior of two sets of microcrystalline cellulose pellets. Int J Pharm 219:113–126

    Article  CAS  Google Scholar 

  377. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Progr Polym Sci 26:1763–1837

    Article  CAS  Google Scholar 

  378. Dorn S, Wendler F, Meister F, Heinze T (2008) Interactions of ionic liquids with polysaccharides—7: Thermal stability of cellulose in ionic liquids and N-methylmorpholine-N-oxide. Macromol Mater Eng 293:907–913

    Article  CAS  Google Scholar 

  379. Wendler F, Konkin A, Heinze T (2008) Studies on the stabilization of modified Lyocell solutions. Macromol Symp 262:72–84

    Article  CAS  Google Scholar 

  380. Hatakeyama H, Hatakeyama T (1998) Interactions between water and hydrophilic polymers. Thermochim Acta 308:3–22

    Article  CAS  Google Scholar 

  381. Horbach A (1987) Thermoanalytical possibilities for characterization of cellulose and cellulose derivatives. Papier (Bingen, Germany) 41:652–657

    Google Scholar 

  382. Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81:353–358

    Article  CAS  Google Scholar 

  383. Hassan ML, Moorefield CN, Kotta K, Newkome GR (2005) Regioselective combinational-type synthesis, characterization, and physical properties of dendronized cellulose. Polymer 46:8947–8955

    Article  CAS  Google Scholar 

  384. Heinze T, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulose p-toluenesulfonates. J Appl Polym Sci 60:1891–1900

    Article  CAS  Google Scholar 

  385. Gaan S, Rupper P, Salimova V, Heuberger M, Rabe S, Vogel F (2009) Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates: effect of alkyl substituent on nitrogen atom. Polym Degrad Stab 94:1125–1134

    Article  CAS  Google Scholar 

  386. Alvarez VA, Vásquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal biocomposites. Polym Degrad Stab 84:13–21

    Article  CAS  Google Scholar 

  387. El-Kalyoubi SF, El-Shinnawy NA (1985) Thermogravimetric analysis of some chemically modified celluloses. J Appl Polym Sci 30:4793–4799

    Article  CAS  Google Scholar 

  388. Nada AMA, Hassan ML (1999/2000) Thermal behavior of cellulose and some cellulose derivatives. Polym Degrad Stab 67:111–115

    Google Scholar 

  389. Jain RK, Lal K, Bhatnagar HL (1989) Thermal degradation of cellulose esters and their tosylated products in air. Polym Degrad Stab 26:101–112

    Article  CAS  Google Scholar 

  390. Kaloustian J, Pauli AM, Pastor J (1997) Thermal analysis of cellulose and some etherified and esterified derivatives. J Therm Anal 48:791–804

    Article  CAS  Google Scholar 

  391. Jandura P, Riedl B, Kokta BV (2000) Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab 70:387–394

    Article  CAS  Google Scholar 

  392. Berthold J, Rinaudo M, Salmen L (1996) Association of water to polar groups; estimations by an adsorption model for ligno-cellulosic materials. Colloids Surf A 112:117–129

    Article  CAS  Google Scholar 

  393. Mizutani C, Inagaki H, Bertoniere NR (1999) Water absorbancy of never-dried cotton fibers. Cellulose 6:167–176

    Article  CAS  Google Scholar 

  394. Hatakeyama T, Nakamura K, Hatakeyama H (2000) Vaporization of bound water associated with cellulose fibers. Thermochim Acta 352–353:233–239

    Article  Google Scholar 

  395. Nakamura K, Hatakeyama T, Hatakeyama H (1981) Studies on bound water of cellulose by differential scanning calorimetry. Text Res J 51:607–613

    Article  CAS  Google Scholar 

  396. Kaloustian J, Pauli AM, Pastor J (1996) Characterization by thermal analysis of lignin, cellulose, and some of its etherified derivatives. J Therm Anal 46:91–104

    Article  CAS  Google Scholar 

  397. Ciesla K, Rahier H, Zakrzewska-Trznadel G (2004) Interaction of water with the regenerated cellulose membrane studied by DSC. J Therm Anal Calorim 77:279–293

    Article  CAS  Google Scholar 

  398. Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103

    Article  CAS  Google Scholar 

  399. Edgar KJ, Pecorini TJ, Glasser WG (1998) Long-chain cellulose esters: preparation, properties, and perspective. ACS Symp Ser 688:38–60

    Article  CAS  Google Scholar 

  400. Takahashi A, Kawaharada T, Kato T (1979) Melting temperature of thermally reversible gel. V. Heat of fusion of cellulose triacetate and the melting of cellulose diacetate-benzyl alcohol gel. Polym J 11:671–675

    Article  CAS  Google Scholar 

  401. Kamide K, Saito M (1985) Thermal analysis of cellulose acetate solids with total degrees of substitution of 0.49, 1.75, 2.46, and 2.92. Polym J 17:919–928

    Article  CAS  Google Scholar 

  402. Joly N, Granet R, Krausz P (2004/2005) Olefin metathesis applied to cellulose derivatives: synthesis, analysis, and properties of new cross-linked cellulose plastic films. J Polym Chem A 43:407–418

    Google Scholar 

  403. Tosh BN, Saikia CN (1998) Thermal degradation of some homogeneously esterified products prepared from different molecular weight fractions of high α-cellulose pulp. J Polym Mater 15:185–195

    CAS  Google Scholar 

  404. Uryash VF, Rabinovich IB, Mochalov AN, Khlyustova TB (1985) Thermal and calorimetric analysis of cellulose, its derivatives and their mixtures with plasticizers. Termochim Acta 93:409–412

    Article  CAS  Google Scholar 

  405. Cooney JD, Day M, Wiles DM (1984) Kinetic and thermogravimetric analysis of the thermal oxidative degradation of flame-retardant polyesters. J Appl Polym Sci 29:911–923

    Article  CAS  Google Scholar 

  406. Cooney JD, Day M, Wiles DM (1983) Thermal degradation of poly(ethylene terephthalate): a kinetic analysis of thermogravimetric data. J Appl Polym Sci 50:2887–2892

    Article  Google Scholar 

  407. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinze, T., El Seoud, O.A., Koschella, A. (2018). Structure and Properties of Cellulose and Its Derivatives. In: Cellulose Derivatives. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-73168-1_2

Download citation

Publish with us

Policies and ethics