Skip to main content

mm-Wave Front-End Design for Phased-Array Systems

  • Chapter
  • First Online:
Batteryless mm-Wave Wireless Sensors

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 818 Accesses

Abstract

In the previous chapters, a monolithic mm-wave sensor network was introduced. An on-chip wireless power receiver with an ultra-low-power receiver and transmitter front-end was presented. In this chapter, the base-station for monolithic sensor networks with phased-array architecture is analyzed and the key circuits are developed. By using a phased-array architecture, the base-station can achieve better sensitivity for the receiver part, and can also increase the transferred power density at the sensor node location for the transmitter part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Yu, P. Baltus, A. de Graauw, E. van der Heijden, C. Vaucher, A. van Roermund, A 60 GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems. IEEE J. Solid State Circuits 45(9), 1697–1709 (2010)

    Article  Google Scholar 

  2. H. Friis, A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)

    Article  Google Scholar 

  3. P. Smulders, Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. Commun. Mag. IEEE 40(1), 140–147 (2002)

    Article  Google Scholar 

  4. A. Natarajan, S. Reynolds, M.-D. Tsai, S. Nicolson, J.-H. Zhan, D.G. Kam, D. Liu, Y.-L. Huang, A. Valdes-Garcia, B. Floyd, A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 46(5), 1059–1075 (2011)

    Article  Google Scholar 

  5. H. Gao, K. Ying, M.K. Matters-Kammerer, P. Harpe, B. Wang, B. Liu, W.A. Serdijn, P.G.M. Baltus, 60 GHz 5-bit digital controlled phase shifter in a digital 40 nm CMOS technology without ultra-thick metals. Electron. Lett. 52(19), 1611–1613 (2016)

    Article  Google Scholar 

  6. S. Reynolds, A. Natarajan, M.-D. Tsai, S. Nicolson, J.-H. Zhan, D. Liu, D. Kam, O. Huang, A. Valdes-Garcia, B. Floyd, A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2010), pp. 461–464

    Google Scholar 

  7. H. Veenstra, M. Notten, D. Zhao, J. Long, A 3-channel true-time delay transmitter for 60GHz radar-beamforming applications, in 2011 Proceedings of the ESSCIRC (ESSCIRC) (2011), pp. 143–146

    Google Scholar 

  8. X. Guan, H. Hashemi, A. Hajimiri, A fully integrated 24-GHz eight-element phased-array receiver in silicon. IEEE J. Solid-State Circuits 39(12), 2311–2320 (2004)

    Article  Google Scholar 

  9. H. Hashemi, X. Guan, A. Komijani, A. Hajimiri, A 24-GHz SiGe phased-array receiver-LO phase-shifting approach. IEEE Trans. Microwave Theory Tech. 53(2), 614–626 (2005)

    Article  Google Scholar 

  10. B. Wang, H. Gao, K. Ying, M.K. Matters-Kammerer, P. Baltus, A 60 GHz phased array system evaluation based on a 5-bit phase shifter in CMOS technology, in 2016 Symposium on Communications and Vehicular Technologies (SCVT) (2016), pp. 1–4

    Google Scholar 

  11. W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, T.-W. Huang, 60-GHz 5-bit phase shifter with integrated VGA phase-error compensation. IEEE Trans. Microwave Theory Tech. 61(3), 1224–1235 (2013)

    Article  Google Scholar 

  12. W.-J. Tseng, C.-S. Lin, Z.-M. Tsai, H. Wang, A miniature switching phase shifter in 0.18 μm CMOS, in Asia Pacific Microwave Conference, 2009 (APMC) (2009), pp. 2132–2135

    Google Scholar 

  13. S.Y. Kim, G. Rebeiz, A 4-Bit passive phase shifter for automotive radar applications in 0.13 μm CMOS, in Annual IEEE Compound Semiconductor Integrated Circuit Symposium, 2009 (CISC) (2009), pp. 1–4

    Google Scholar 

  14. C.-W. Wang, H.-S. Wu, C.-K. Tzuang, CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-Band. IEEE Trans. Microwave Theory Tech. 59(7), 1778–1786 (2011)

    Google Scholar 

  15. K.-J. Koh, J. May, G. Rebeiz, A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology. IEEE J. Solid State Circuits 44(5), 1498–1509 (2009)

    Google Scholar 

  16. M.-D. Tsai, A. Natarajan, 60GHz passive and active RF-path phase shifters in silicon,” in IEEE Radio Frequency Integrated Circuits Symposium, 2009 (RFIC) (2009), pp. 223–226

    Google Scholar 

  17. H. Krishnaswamy, A. Valdes-Garcia, J.-W. Lai, A silicon-based, all-passive, 60 GHz, 4-element, phased-array beamformer featuring a differential, reflection-type phase shifter, in 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY) (2010), pp. 225–232

    Google Scholar 

  18. K. Ying, H. Gao, D. Milosevic, P. Baltus, A nonlinear transfer function based receiver for wideband interference suppression. J. Sens. 2017, 15 (2017)

    Article  Google Scholar 

  19. B.-W. Min, G. Rebeiz, Ka-Band BiCMOS 4-Bit phase shifter with integrated LNA for phased array T/R Modules, in IEEE/MTT-S International Microwave Symposium (2007), pp. 479–482

    Google Scholar 

  20. Y.-C. Chiang, W.-T. Li, J.-H. Tsai, T.-W. Huang, A 60GHz digitally controlled 4-bit phase shifter with 6-ps group delay deviation, in 2012 IEEE MTT-S International Microwave Symposium Digest (MTT) (2012), pp. 1–3

    Google Scholar 

  21. D.-W. Kang, H.D. Lee, C.-H. Kim, S. Hong, Ku-band MMIC phase shifter using a parallel resonator with 0.18 μm cmos technology. IEEE Trans. Microwave Theory Tech. 54(1), 294–301 (2006)

    Google Scholar 

  22. B.-W. Min, G. Rebeiz, Single-ended and differential Ka-Band BiCMOS phased array front-ends. IEEE J. Solid State Circuits 43(10), 2239–2250 (2008)

    Article  Google Scholar 

  23. H. Gao, K. Ying, M.K. Matters-Kammerer, P. Harpe, Q. Ma, A. van Roermund, P. Baltus, A 48-61 GHz LNA in 40-nm CMOS with 3.6 dB minimum NF employing a metal slotting method, in 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2016), pp. 154–157

    Google Scholar 

  24. M. Byung-Wook, G. Rebeiz, Ka-Band SiGe HBT low noise amplifier design for simultaneous noise and input power matching. IEEE Microwave Wireless Compon. Lett. 17(12), 891–893 (2007)

    Article  Google Scholar 

  25. G.D. Vendelin, A.M. Pavio, U.L. Rhode, Microwave Circuit Design Using Linear and Nonlinear Techniques. Wiley-Interscience; 2 edition (July 5, 2005)

    Google Scholar 

  26. P. Sakian, E. Janssen, A. van Roermund, R. Mahmoudi, Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA. IEEE Trans. Microwave Theory Tech. 60(3), 702–713 (2012)

    Article  Google Scholar 

  27. H.-H. Hsieh, P.-Y. Wu, C.-P. Jou, F.-L. Hsueh, G.-W. Huang, 60GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS, in 2011 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2011), pp. 1–4

    Google Scholar 

  28. S. Pellerano, Y. Palaskas, K. Soumyanath, A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS. IEEE J. Solid State Circuits 43(7), 1542–1552 (2008)

    Google Scholar 

  29. J. Roderick, H. Krishnaswamy, K. Newton, H. Hashemi, Silicon-based ultra-wideband beam-forming. IEEE J. Solid State Circuits 41(8), 1726–1739 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, H., Matters-Kammerer, M., Milosevic, D., Baltus, P.G.M. (2018). mm-Wave Front-End Design for Phased-Array Systems. In: Batteryless mm-Wave Wireless Sensors. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-72980-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72980-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72979-4

  • Online ISBN: 978-3-319-72980-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics