Skip to main content

Can Young Olive Plants Overcome Heat Shock?

  • Chapter
  • First Online:
Theory and Practice of Climate Adaptation

Part of the book series: Climate Change Management ((CCM))

Abstract

Climate change is bringing more frequent and intense heat waves over the last years. Under this circumstance, it is important to understand whether species can tolerate stress and which mechanisms are involved in this adaptation process. Olive tree (Olea europaea L.) have been known for centuries to be drought tolerant, but less is known about the impact on the physiological response of this species to heat. To understand how young olive plants deal with heat shock, one-year-old plants (cv. ‘Arbequina’), grown at 23 ± 2 °C, were exposed to heat, 40 °C, for 2 h. Relative water content, gas exchange, carbohydrates content, cell membrane permeability and lipid peroxidation were assessed immediately after heat exposure. The heat shock treatment compromised plant water status, photosynthesis and induced stomatal closure. However, neither membrane damage nor carbohydrates contents (total soluble sugars and starch) were affected. The results indicate that young olive plants can overcome short heat shock episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araújo, M., et al. (2016). Plasticity of young Moringa oleifera L. plants to face water deficit and UVB radiation challenges. Journal of Photochemistry and Photobiology B: Biology, 162, 278–285. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1011134416302251.

    Article  Google Scholar 

  • Assab, E., et al. (2011). Heat shock response in olive (Olea europaea L.) twigs: Identification and analysis of a cDNA coding a class I small heat shock protein. Plant Biosystems, 145 (March 2016), 419–425 ST–Heat shock response in olive (Olea e).

    Article  Google Scholar 

  • Bacelar, E. A., Moutinho-Pereira, J. M., et al. (2007a). Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 60(2), 183–192. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0098847206001250.

    Article  CAS  Google Scholar 

  • Bacelar, E. A., Santos, D. L., et al. (2007b). Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant and Soil, 292(1–2), 1–12. Available at: http://link.springer.com/10.1007/s11104-006-9088-1.

    Article  CAS  Google Scholar 

  • Bacelar, E. A., et al. (2006). Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. Plant Science, 170(3), 596–605.

    Article  CAS  Google Scholar 

  • Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4(July), 1–18. Available at: ​https://www.frontiersin.org/articles/10.3389/fpls.2013.00273/full.

  • Brestic, M., et al. (2013). Heat signaling and stress responses in photosynthesis. In K. R. Hakeem, R. Rehman, & I. Tahir, eds. Plant signaling: Understanding the molecular crosstalk (pp. 241–256). Springer.

    Google Scholar 

  • Carr, M. K. V. (2013). The water relations and irrigation requirements of olive (Olea europaea L.): A review. Experimental Agriculture, 49(4), 597–639. Available at: http://dx.doi.org/10.1017/S0014479713000276.

    Article  Google Scholar 

  • Criado, M. N., et al. (2007). Comparative study of the effect of the maturation process of the olive fruit on the chlorophyll and carotenoid fractions of drupes and virgin oils from Arbequina and Farga cultivars. Food Chemistry, 100(2), 748–755.

    Article  CAS  Google Scholar 

  • Dias, M. C., Azevedo, C., et al. (2014a). Melia azedarach plants show tolerance properties to water shortage treatment: An ecophysiological study. Plant physiology and biochemistry, 75, 123–127. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24440555.

    Article  CAS  Google Scholar 

  • Dias, M. C., Oliveira, H., et al. (2014b). Improving elms performance under drought stress: The pretreatment with abscisic acid. Environmental and Experimental Botany, 100, 64–73. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0098847213002244.

    Article  CAS  Google Scholar 

  • Feki, K., Saibi, W., & Brini, F. (2015). Understanding Plant Stress Response and Tolerance to Salinity from Gene to Whole Plant. Managing Salt Tolerance in Plants, (May 2016), 1–18. Available at: http://www.crcnetbase.com/doi/10.1201/b19246-2.

    Google Scholar 

  • Galán, C., et al. (2001). The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. International Journal of Biometeorology, 45(1), 8–12.

    Google Scholar 

  • Hodges, D. M. et al., (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604–611. Available at: http://link.springer.com/10.1007/s004250050524.

  • IPCC. (2014). Climate change 2014 impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. In C. B. Field et al., (Eds.), Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Available at: http://ebooks.cambridge.org/ref/id/CBO9781107415379.

  • Irigoyen, J. J., Emerich, D. W., & Sanchezdiaz, M. (1992). Water-stress induced changes in concentrations of proline and total soluble sugars in Nodulated Alfalfa (Medicago sativa) Plants. Physiologia Plantarum, 84(1), 55–60.

    Article  CAS  Google Scholar 

  • Koubouris, G. C., Metzidakis, I. T., & Vasilakakis, M. D. (2009). Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environmental and Experimental Botany, 67, 209–214.

    Article  Google Scholar 

  • Koubouris, G. C., et al. (2015). Ultraviolet-B radiation or heat cause changes in photosynthesis, antioxidant enzyme activities and pollen performance in olive tree. Photosynthetica, 53(2), 279–287.

    Article  CAS  Google Scholar 

  • McLoughlin, F., et al. (2016). Class I and II small heat-shock proteins protect protein translation factors during heat stress. Plant Physiology, 172(October), 00536.2016. Available at: http://www.plantphysiol.org/lookup/doi/10.1104/pp.16.00536.

  • Mittler, R. et al. (2011). ROS signaling: The new wave? Trends in Plant Science, 16(6), 300–309. Available at: http://dx.doi.org/10.1016/j.tplants.2011.03.007.

    Article  CAS  Google Scholar 

  • Osaki, M., Shinano, T., & Tadano, T. (1991). Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Science and Plant Nutrition, 37(1), 117–128.

    Article  CAS  Google Scholar 

  • Rigueiro-Rodríguez, A., McAdam, J. & Mosquera-Losada, M. R. (Eds.). (2009). Agroforestry in Europe: Current status and future prospects, Springer Science + Business Media B. V.

    Google Scholar 

  • Satbhai, R. D., & Naik, R. M. (2014). Osmolytes accumulation, cell membrane integrity, and antioxidant enzymes in sugarcane varieties differing in salinity tolerance. Sugar Tech, 16(1), 30–35.

    Article  CAS  Google Scholar 

  • Tripepi, M., Pöhlschroder, M., & Bitonti, M. B. (2011). Diversity of dehydrins in Olea europaea plants exposed to stress. The Open Plant Science Journal, 5, 9–13.

    Article  CAS  Google Scholar 

  • von Caemmerer, S., & Farquhar, G. D. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–387.

    Article  Google Scholar 

  • Wahid, A., et al. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223.

    Article  Google Scholar 

  • Zhao, X. X., et al. (2014). Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress. Molecules, 19(9), 13564–13576.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Portuguese Foundation for Science and Technology (FCT) through a doctoral fellowship of Márcia Araújo (SFRH/BD/116801/2016) and a post-doctoral fellowship of Maria Celeste Dias (SFRH/BPD/100865/2014). This work was financed by FCT/MEC through national funds and the co-funding by the FEDER, within the PT2020 Partnership Agreement, and COMPETE 2010, within the projects UID/BIA/04004/2013, UID/QUI/00062/2013 and UID/AGR/04033/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Araújo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araújo, M., Santos, C., Dias, M.C. (2018). Can Young Olive Plants Overcome Heat Shock?. In: Alves, F., Leal Filho, W., Azeiteiro, U. (eds) Theory and Practice of Climate Adaptation. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-72874-2_11

Download citation

Publish with us

Policies and ethics