Skip to main content

Improved Leader Election for Self-organizing Programmable Matter

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2017)

Abstract

We consider programmable matter that consists of computationally limited devices (called particles) that are able to self-organize in order to achieve some collective goal without the need for central control or external intervention. We use the geometric amoebot model to describe such self-organizing particle systems, which defines how particles can actively move and communicate with one another. In this paper, we present an efficient local-control algorithm which solves the leader election problem in \(\mathcal {O}(n)\) asynchronous rounds with high probability, where n is the number of particles in the system. Our algorithm relies only on local information — particles do not have unique identifiers, any knowledge of n, or any sort of global coordinate system — and requires only constant memory per particle.

J. J. Daymude and A. W. Richa—Supported in part by NSF awards CCF-1422603 and CCF-1637393.

R. Gmyr, C. Scheideler and T. Strothmann—Supported in part by DFG grant SCHE 1592/3-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An event occurs with high probability (w.h.p.), if the probability of success is at least \(1 - n^{-c}\), where \(c > 1\) is a constant; in our context, n is the number of particles.

  2. 2.

    An astute reader may note that a w.h.p. guarantee on correctness is weaker than the absolute guarantee given for the algorithm in [14], but the latter was given without considering the necessary particle-level execution details.

  3. 3.

    This w.h.p. guarantee results from there being a small but nonzero probability that either (a) all agents flip tails and become non-candidates in the segment setup phase, or (b) more than one candidate generates the same highest identifier in the identifier setup phase. See [9] for more details.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)

    Article  Google Scholar 

  2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  MATH  Google Scholar 

  3. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Appl. Math. 71, 79–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm for compression in self-organizing particle systems. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 279–288 (2016)

    Google Scholar 

  5. Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4_2

    Google Scholar 

  6. Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 16–30. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01928-4_2

    Chapter  Google Scholar 

  7. Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith, S.: Programmable assembly with universally foldable strings (moteins). IEEE Trans. Rob. 27(4), 718–729 (2011)

    Article  Google Scholar 

  8. Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, IRCA 1994, vol. 1, pp. 449–455 (1994)

    Google Scholar 

  9. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved leader election for self-organizing programmable matter. CoRR, abs/1701.03616 (2017)

    Google Scholar 

  10. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Brief announcement: amoebot - a new model for programmable matter. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2014, Prague, Czech Republic, 23–25 June 2014, pp. 220–222 (2014)

    Google Scholar 

  11. Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C., Strothmann, T.: On the runtime of universal coating for programmable matter. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 148–164. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43994-5_10

    Chapter  Google Scholar 

  12. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An algorithmic framework for shape formation problems in self-organizing particle systems. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM 2015, Boston, MA, USA, 21–22 September 2015, pp. 21:1–21:2 (2015)

    Google Scholar 

  13. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal shape formation for programmable matter. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, 11–13 July 2016, pp. 289–299 (2016)

    Google Scholar 

  14. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C.: Leader election and shape formation with self-organizing programmable matter. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_8

    Chapter  Google Scholar 

  15. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)

    Article  Google Scholar 

  16. Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell structures - CEBOT. In: Proceedings of the 1988 IEEE International Conference on Intelligent Robots and Systems, IROS 1988, pp. 145–150 (1988)

    Google Scholar 

  17. Kernbach, S. (ed.): Handbook of Collective Robotics - Fundamentals and Challanges. Pan Stanford Publishing, Singapore (2012)

    Google Scholar 

  18. McLurkin, J.: Analysis and implementation of distributed algorithms for multi-robot systems. Ph.D. thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  19. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000, pp. 459–468 (2000)

    Google Scholar 

  21. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  22. Woods, D.: Intrinsic universality and the computational power of self-assembly. In: Proceedings of MCU 2013, pp. 16–22 (2013)

    Google Scholar 

  23. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 353–354 (2013)

    Google Scholar 

  24. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Daymude .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T. (2017). Improved Leader Election for Self-organizing Programmable Matter. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2017. Lecture Notes in Computer Science(), vol 10718. Springer, Cham. https://doi.org/10.1007/978-3-319-72751-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72751-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72750-9

  • Online ISBN: 978-3-319-72751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics