Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 946))

  • 1597 Accesses

Abstract

In this chapter we provide an overview of helicity and vorticity conservation laws in ideal fluid dynamics and MHD. For ideal barotropic fluids, in fluid mechanics, we derive the helicity conservation law for the helicity density h f  = u ⋅ω, where ω = ∇×u is the fluid vorticity. The integral \(H_f=\int _{V_m} h_f \ d^3x\) over a volume V m moving with the fluid, is the fluid helicity. It is important in the description of the linkage of the vorticity streamlines (e.g. Moffatt (1969), Arnold and Khesin (1998)). In MHD, the integral \(H_M=\int _{V_m} \mathbf {A}\cdot \mathbf {B}\ d^3x\) is the magnetic helicity, where B = ∇×A is the magnetic induction and A is the magnetic vector potential. It is referred to as the Chern Simons term in field theory (the Chern Simons term in Yang-Mills theory has a totally different form). It describes the linkage and self linkage of the magnetic field lines (Woltjer (1958), Berger and Field (1984)). The cross helicity \(H_C=\int _{V_m} \mathbf {u}\cdot \mathbf {B}\ d^3x\) describes the linkage of the magnetic field flux tubes and the vorticity flux tubes. For the case of a barotropic gas with p = p(ρ), H C is conserved following the flow, i.e. dH C /dt = 0. For non-barotopic flows, a modifled form of the cross helicity, H CNB is conserved following the flow. We derive topological invariants (topological charges) by determining invariants which are Lie dragged with the flow in Chapter 6 (e.g. Moiseev et al. (1982), Tur and Yanovsky (1993), Webb et al. (2014a)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer, New York (1998)

    MATH  Google Scholar 

  • Berger, M.A.: An Energy Formula for Nonlinear Force Free Magnetic Fields. Astron. Astrophys. 201, 355–361 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  • Berger, M.A.: Third Order Braid Invariants. J. Phys. A 24, 4027–4036 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Berger, M.A., Field, G.B.: The Topological Properties of Magnetic Helicity. J. Fluid. Mech. 147, 133–148 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Berger, M.A., Ruzmaikin, A.: Rate of Helicity Production by Solar Rotation. J. Geophys. Res. 105(A5), 10481–10490 (2000)

    Article  ADS  Google Scholar 

  • Bieber, J.W., Evenson, P.A., Matthaeus, W.H.: Magnetic Helicity of the Parker Field. Astrophys. J. 315, 700 (1987)

    Article  ADS  Google Scholar 

  • Boyd, T.J.M., Sanderson, J.J.: In: Jeffrey, A. (ed.) Plasma Dynamics. Applications of Mathematics Series. Barnes and Noble, New York (1969)

    Google Scholar 

  • Cary, J.R., Littlejohn, R.G.: Noncanonical Hamiltonian Mechanics and Its Application to Magnetic Field Line Flow. Ann. Phys. 151, 1–34 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Cheviakov, A.F.: Conservation Properties and Potential Systems of Vorticity-Type Equations. J. Math. Phys. 55, 033508 (16 pp.) (2014) (0022-2488/2014/55(3)/033508/16)

    Google Scholar 

  • Elsässer, W.M.: Hydrodynamic Dynamo Theory. Rev. Mod. Phys. 28, 135 (1956)

    Article  Google Scholar 

  • Finn, J.H., Antonsen, T.M.: Magnetic Helicity: What Is it and What Is it Good for? Comments Plasma Phys. Contr. Fusion 9(3), 111 (1985)

    Google Scholar 

  • Finn, J.M., Antonsen, T.M.: Magnetic Helicity Injection for Configurations with Field Errors. Phys. Fluids 31(10), 3012–3017 (1988)

    Article  ADS  MATH  Google Scholar 

  • Holm, D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry. Imperial College Press, London (2008a). Distributed by World Scientific

    Google Scholar 

  • Holm, D.D., Kupershmidt, B.A.: Poisson Brackets and Clebsch Representations for Magnetohydrodynamics, Multi-Fluid Plasmas and Elasticity. Phys. D 6D, 347–363 (1983a)

    MATH  Google Scholar 

  • Holm, D.D., Kupershmidt, B.A.: Noncanonical Hamiltonian Formulation of Ideal Magnetohydrodynamics. Physica D 7D, 330–333 (1983b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hydon, P.E., Mansfield, E.L.: Extensions of Noether’s Second Theorem: From Continuous to Discrete Systems. Proc. R. Soc. A 467, 3206–3221 (2011). https://doi.org/10.1098/rspa.2011.0158

    Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  • Kats, A.V.: Variational Principle in Canonical Variables, Weber Transformation and Complete Set of Local Integrals of Motion for Dissipation-Free Magnetohydrodynamics. J. Exp. Theor. Phys. Lett. 77(12), 657–661 (2003)

    Google Scholar 

  • Longcope, D.W., Malanushenko, A.: Defining and Calculating Self-helicity in Coronal Magnetic Fields. Astrophys. J. 674, 1130–1143 (2008)

    Article  ADS  Google Scholar 

  • Low, B.C.: Magnetic Helicity in a Two-Flux Partitioning of an Ideal Hydromagnetic Fluid. Astrophys. J. 646, 1288–1302 (2006)

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Goldstein, M.L.: Measurement of the Rugged Invariants of Magnetohydrodynamic Turbulence in the Solar Wind. J. Geophys. Res. 87(A8), 6011–6028 (1982)

    Article  ADS  Google Scholar 

  • Moffatt, H.K.: The Degree of Knottedness of Tangled Vortex Lines. J. Fluid. Mech. 35, 117 (1969)

    Article  ADS  MATH  Google Scholar 

  • Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  • Moffatt, H.K., Ricca, R.L.: Helicity and the Calugareanu Invariant. Proc. R. Soc. Lond. Ser. A 439, 411 (1992)

    Article  ADS  MATH  Google Scholar 

  • Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Yanovskii, V.V.: On the Freezing-in Integrals and Lagrange Invariants in Hydrodynamic Models. Sov. Phys. J. Exp. Theor. Phys. 56(1), 117–123 (1982)

    MathSciNet  Google Scholar 

  • Morrison, P.J.: Magnetic Field Lines, Hamiltonian Dynamics and Nontwist Systems. Phys. Plasmas 7(6), 2279–2289 (2000)

    Article  Google Scholar 

  • Padhye, N.S., Morrison, P.J.: Fluid Relabeling Symmetry. Phys. Lett. A 219, 287–292 (1996a)

    Google Scholar 

  • Padhye, N.S., Morrison, P.J.: Relabeling Symmetries in Hydrodynamics and Magnetohydrodynamics. Plasma Phys. Rep. 22, 869–877 (1996b)

    ADS  Google Scholar 

  • Parker, E.N.: Cosmic Magnetic Fields. Oxford University Press, New York (1979)

    Google Scholar 

  • Prior, C., Yeates, A.R.: On the Helicity of Open Magnetic Fields. Astrophys. J. 787(100), 13 pp. (2014)

    Google Scholar 

  • Rosner, R., Low, B.C., Tsinganos, K., Berger, M.A.: On the Relationship Between the Topology of Magnetic Field Lines and Flux Surfaces. Geophys. Astrophys. Fluid Dyn. 48, 251–271 (1989)

    Article  ADS  MATH  Google Scholar 

  • Tur, A.V., Yanovsky, V.V.: Invariants in Dissipationless Hydrodynamic Media. J. Fluid Mech. 248, 67–106 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Webb, G.M.: Multi-Symplectic, Lagrangian, One-Dimensional Gas Dynamics. J. Math. Phys. 56, 053101 (20 pp.) (2015). Also available at http://arxiv.org/abs/1408.4028v4

  • Webb, G.M., Anco, S.C.: On Magnetohydrodynamic Gauge Field Theory. J. Phys. A Math. Theor. 50, 255501, 34 pp. (2017)

    Google Scholar 

  • Webb, G.M., Mace, R.L.: Potential Vorticity in Magnetohydrodynamics. J. Plasma Phys. 81, p. 18, 905810115 (2015). https://doi.org/10.1017/S0022377814000658. Preprint: http://arxiv/org/abs/1403.3133

  • Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: Homotopy Formulas for the Magnetic Vector Potential and Magnetic Helicity: The Parker Spiral Interplanetary Magnetic Field and Magnetic Flux Ropes. J. Geophys. Res. (Space Phys.) 115, A10112 (2010a). https://doi.org/10.1029/2010JA015513. Corrections: J. Geophys. Res. 116, A11102 (2011). https://doi.org/10.1029/2011JA017286

  • Webb, G.M., Dasgupta, B., McKenzie, J.F., Hu, Q., Zank, G.P.: Local and Nonlocal Advected Invariants and Helicities in Magnetohydrodynamics and Gas Dynamics I: Lie Dragging Approach. J. Phys. A. Math. Theor. 47, 095501 (33 pp.) (2014a). https://doi.org/10.1088/1751-8113/49/9/095501. Preprint available at http://arxiv.org/abs/1307.1105

  • Webb, G.M., Dasgupta, B., McKenzie, J.F., Hu, Q., Zank, G.P.: Local and Nonlocal Advected Invariants and Helicities in Magnetohydrodynamics and Gas Dynamics II: Noether’s Theorems and Casimirs. J. Phys. A. Math. Theor. 47, 095502 (31 pp.) (2014b). https://doi.org/10.1088/1751-8113/47/9/095502. Preprint available at http://arxiv.org/abs/1307.1038

  • Woltjer, L.: A Theorem on Force-Free Magnetic Fields. Proc. Natl. Acad. Sci. 44, 489 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yahalom, A.: Aharonov-Bohm Effects in Magnetohydrodynamics. Phys. Lett. A 377, 1898–1904 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yahalom, A.: Simplified Variational Principles for Non-barotropic Magnetohydrodynamics. J. Plasma Phys. 82(2), 15 pp. (2016a). Article ID. 905820204

    Google Scholar 

  • Yahalom, A.: A Conserved Cross Helicity for Non-barotropic MHD. Geophys. Astrophys. Fluid Dyn. 111(2), 131–137 (2017a). Preprint. arXiv:1605.02537v1

    Google Scholar 

  • Yahalom, A.: Non Barotropic Cross Helicity Conservation and the Aharonov-Bohm Effect in Magnetohydrodynamics. Fluid Dyn. Res. (2017b). https://doi.org/10.1088/1873-7005/aa6fc7

  • Yeates, A.R., Hornig, G.: Unique Topological Characterization of Braided Magnetic Fields. Phys. Plasmas 20, 012102 (5 pp.) (2013)

    Google Scholar 

  • Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian Formalism for Nonlinear Waves. Phys. Uspekhi 40(11), 1087–1116 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Webb, G. (2018). Helicity in Fluids and MHD. In: Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws. Lecture Notes in Physics, vol 946. Springer, Cham. https://doi.org/10.1007/978-3-319-72511-6_3

Download citation

Publish with us

Policies and ethics