Skip to main content

Methanotrophy, Methylotrophy, the Human Body, and Disease

  • Living reference work entry
  • First Online:
Book cover Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Methylotrophic Bacteria use one-carbon (C1) compounds as their carbon source. They have been known to be associated to the human body for almost 20 years as part of the normal flora and were identified as pathogens in the early 1990s in end-stage HIV patients and chemotherapy patients. In this chapter, I look at C1 compounds in the human body and exposure from the environment and then consider Methylobacterium spp. and Methylorubrum spp. in terms of infections and its role in breast and bowel cancers, Methylococcus capsulatus and its role in inflammatory bowel disease, and Brevibacterium casei and Hyphomicrobium sulfonivorans as part of the normal human flora. I also consider the abundance of methylotrophs from the Actinobacteria being identified in human studies and the potential bias of the ionic strength of culture media and the needs for future work. Within the scope of future work, I consider the need for the urgent assessment of the pathogenic, oncogenic, mutagenic, and teratogenic potential of Methylobacterium spp. and Methylorubrum spp. and the need to handle them at higher containment levels until more data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amiri H (2007) Chemical composition and antibacterial activity of the essential oil of Allium jesdianum Boiss. & Buhse from Iran. J Med Plants 6:39–44+65

    CAS  Google Scholar 

  • Anesti V, Vohra J, Goonetilleka S, McDonald IR, Sträubler B, Stackebrandt E, Kelly DP, Wood AP (2004) Molecular detection and isolation of facultatively methylotrophy, including Methylobacterium podarium sp. nov., from the human foot. Environ Microbiol 6:820–830

    Article  CAS  PubMed  Google Scholar 

  • Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP (2005) Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Aslam Z, Lee CS, Kim KH, Im WT, Ten LN, Lee ST (2007) Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57:566–571

    Article  CAS  PubMed  Google Scholar 

  • Austin B, Goodfellow M (1979) Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int J Syst Bacteriol 29:373–378

    Article  Google Scholar 

  • Barbeau J, Tanguay R, Faucher E, Avezard C, Trudel L, Côté L, Prévost A (1996) Multiparametric analysis of waterline contamination in dental units. Appl Environ Microbiol 62:3954–3959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellesia F, Pinetti A, Bianchi A, Tirillini B (1996) Volatile compounds of the white truffle (Tuber magnatum Pico) from Middle Italy. Flavour Fragr J 11:239–243

    Article  CAS  Google Scholar 

  • Bills DD, Keenan TW (1968) Dimethyl sulfide and its precursor in sweetcorn. J Agric Food Chem 16:643–645

    Article  CAS  Google Scholar 

  • Boden R, Thomas E, Savani P, Kelly DP, Wood AP (2008) Novel methylotrophic bacteria isolated from the River Thames (London, UK). Environ Microbiol 10:3225–3236

    Article  PubMed  Google Scholar 

  • Boden R, Borodina E, Wood AP, Kelly DP, Murrell JC, Schäfer H (2011) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193:1250–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437

    Article  CAS  PubMed  Google Scholar 

  • Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183

    Article  CAS  PubMed  Google Scholar 

  • Brown MA, Green JN, Sandin RL, Heimenz JW, Sinnott JT (1996) Methylobacterium bacteremia after infusion with contaminated autologous bone marrow. Clin Infect Dis 23:1191–1192

    Article  CAS  PubMed  Google Scholar 

  • Bystedt J, Swenne L, Aas HW (1959) Determination of trimethylamine oxide in fish muscle. J Sci Food Agric 10:301–304

    Article  CAS  Google Scholar 

  • Callwewaert C, De Maeseneire E, Kerckhof F-M, Verliefde A, van de Wiele T, Boon N (2014) Microbial odour profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 80:6611–6619

    Google Scholar 

  • Carvajal TM, Galvez JB (2015) Current research status on the biology of pink pigmented facultative methylotrophic (PPFM) bacteria belonging to the genus Methylobacterium in the Philippines. Philipp J Syst Biol 9

    Google Scholar 

  • Carvajal TM, Tan RL, Lee AC (2011) Methylobacterium zatmanii, a pink pigmented facultative methylotrophic (PPFM) bacterium isolated from the human oral cavity. Philipp J Syst Biol 5:1–9

    Google Scholar 

  • Castaño-Rodriguez N, Goh K-L, Fock KM, Mitchell HM, Kaakoush NO (2017) Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep 7:15957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Liu F, Ling Z, Tong Z, Xiang C (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7:e39743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoffersen TE, Olsen Hult LT, Solberg H, Bakke A, Kuczkowska K, Huseby E, Jacobsen M, Lea T, Kleiveland CR (2015) Effects of the non-commensal Methylococcus capsulatus Bath on mammalian immune cells. Mol Immunol 66:107–116

    Article  CAS  PubMed  Google Scholar 

  • Cold CJ, Taylor JR (1999) The prepuce. Br J Urol 83:34–44

    Article  Google Scholar 

  • Dalton H, Whittenbury R (1976) The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus (Bath). Arch Microbiol 109:147–151

    Article  CAS  Google Scholar 

  • David AKS, Diongzon NEM (2013) Phenotypic and genotypic characterization of pink pigmented facultative methylotrophic (PPFM) bacteria isolated from the human belly button. Undergraduate thesis, De La Salle University, Manila

    Google Scholar 

  • Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys Z 24:185–206

    CAS  Google Scholar 

  • Edgar RC (2004) Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel E, Baty C, LeCorre D, Souchen I, Martin N (2002) Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 50:6459–6467

    Article  CAS  PubMed  Google Scholar 

  • Engelke UF, Tangerman A, Willemsen MA, Moskau D, Loss S, Mudd SH, Wevers RA (2005) Dimethyl sulfone in human cerebrospinal fluid and blood plasma confirmed by one-dimensional 1H and two-dimensional 1H-13C NMR. NMR Biomed 18(5):331–336

    Article  CAS  PubMed  Google Scholar 

  • Falkinham JO 3rd, Williams MD, Kwait R, Lande L (2016) Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int J Mycobacteriol 5:240–243

    Article  PubMed  Google Scholar 

  • Florin TG, Neale G, Gibson GR, Christi SU, Cummings JH (1991) Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32:766–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher M, Wysocki CJ, Leyden JJ, Spielman AI, Sun X, Preti G (2008) Analyses of volatile organic compounds from human skin. Br J Dermatol 159:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego V, García MT, Ventosa A (2005a) Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287

    Article  CAS  PubMed  Google Scholar 

  • Gallego V, García MT, Ventosa A (2005b) Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55:2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Gallego V, García MT, Ventosa A (2006) Methylobacterium adhaesivum sp. nov., a novel methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342

    Article  CAS  PubMed  Google Scholar 

  • Gilardi GL, Faur YC (1984) Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria. J Clin Microbiol 20:626–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist MJR, Kraft JA, Hammon JG, Connelly BL, Myers MG (1986) Detection of Pseudomonas mesophilica as a source of nosocomial infections in a bone marrow transplant unit. J Clin Microbiol 23:1052–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green P, Ardley JK (2018) Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 68:2727

    Article  PubMed  Google Scholar 

  • Hoffman DR (2010) Ant venoms. Curr Opin Allergy Clin Immunol 10:342–346

    Article  CAS  PubMed  Google Scholar 

  • Hong JC, Rahimy E, Gross CP, Shafman T, Hu X, Yu JB, Ross R, Finkelstein SE, Dosortez A, Park HS, Soulos PR, Evans SB (2018) Radiation dose and cardiac cancer risk in breast cancer treatment: an analysis of modern radiation therapy including community settings. Pract Radiat Oncol. https://doi.org/10.1016/j.prro.2017.07.005

    Article  PubMed  Google Scholar 

  • Hung W-L, Wade WG, Boden R, Kelly DP, Wood AP (2011) Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium. Arch Microbiol 193:407–417

    Article  CAS  PubMed  Google Scholar 

  • Indrelid S, Kleiveland C, Holst R, Jacobsen M, Lea T (2017) The soil bacterium Methylococcus capsulatus Bath interacts with human dendritic cells to modulate immune function. Front Microbiol 8:230

    Article  Google Scholar 

  • Ito H, Iizuka H (1971) Taxonomic studies on a radio-resistant Pseudomonas. J Agric Biol Chem 35:1566–1571

    Google Scholar 

  • Kato Y, Ashara M, Arai D, Goto K, Yokata A (2005) Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl Microbiol 51:287–299

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Anthony C, Murrell JC (2005) Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol 13:195–198

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Ko HJ, Kim HT, Kim YS, Roh YM, Lee CM, Kim HS, Kim CN (2007) Sulfuric odorous compounds emitted from pig-feeding operations. Atmos Environ 41:4811–4818

    Article  CAS  Google Scholar 

  • Klaessen C (2013) Casarett & Doull’s toxicology: the basic science of poisons, 8th edn. McGraw Hill, New York

    Google Scholar 

  • Kleiveland CR, Hult LT, Spetalen S, Kaldhusdal M, Christoffersen TE, Bengtsson O, Romarheim OH, Jacobsen M, Lea T (2013) The noncommensal bacterium Methylococcus capsulatus (Bath) ameliorates dextran sulfate (sodium salt)-induced ulcerative colitis by influencing mechanisms essential for maintenance of the colonic barrier function. Appl Environ Microbiol 79:48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovaleva J, Degener JE, van der Mei HC (2014) Methylobacterium and its role in health care-associated infection. J Clin Microbiol 52:1317–1321

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O’Hanlon JF (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetic Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai C-C, Cheng A, Liu W-L, Tan C-K, Huang Y-T, Chung K-P, Lee M-R, Hsueh P-R (2011) Infections caused by unusual Methylobacterium species. J Clin Microbiol 49:3329–3331

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, Leite R, Elovitz MA, Perry A, Bushman FD (2016) Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiome. Microbiome 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson LD, Wang ZH, Hughes BG (1991) Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Med 57:363–370

    Article  CAS  PubMed  Google Scholar 

  • Leach JM, Chung LTK (1982) Gas concentrations and occupational health in Kraft mills. TAPPI J 65:95–98

    CAS  Google Scholar 

  • Lee C-H, Tang Y-F, Liu J-W (2004) Underdiagnosis of urinary tract infection caused by Methylobacterium species with current standard processing of urine culture and its clinical implications. J Med Microbiol 53:755–759

    Article  PubMed  Google Scholar 

  • Leonardos G, Kendall D, Barnard N (1969) Odor threshold determination of 53 odorant chemicals. J Air Pollut Control Assoc 19:91–95

    Article  CAS  Google Scholar 

  • Lindinger W, Taucher J, Jordan A, Hansel A, Vogel W (1997) Endogenous production of methanol after the consumption of fruit. Alcohol Clin Exp Res 21:939–943

    Article  CAS  PubMed  Google Scholar 

  • Ljunggren G, Norberg B (1948) On the effect and toxicity of dimethyl-sulphide, dimethyl-sulphoxide and methyl-mercaptan. Acta Physiol Scand 5:248–255

    Article  Google Scholar 

  • McFeters GA, Broadaway SC, Pyle BH, Egozy Y (1993) Distribution of bacteria within operating laboratory water purification systems. Appl Environ Microbiol 59:1410–1415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell SC, Smith RL (2001) Trimethylaminuria: the fish malodor syndrome. Drug Metab Dispos 29:517–521

    CAS  PubMed  Google Scholar 

  • Moore JG, Jessop LD, Osborne DN (1987) Gas-chromatographic and mass-spectrometric analysis of the odor of human feces. Gastroenterology 93:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from Mars analog Antarctic dry valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology 15:1076–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nešvera J, Pátek M, Hochmannová J, Chibisova E, Sererijski I, Tsyganov T, Netrusov A (1991) Transformation of a new Gram-positive methylotroph, Brevibacterium methylicum, by plasmid DNA. Appl Microbiol Biotechnol 35:777–780

    Article  Google Scholar 

  • Pino A, Giunta G, Randazzo CL, Caruso S, Caggia C, Cianci A (2017) Bacterial biota of women with bacterial vaginosis treated with lactoferrin: an open prospective randomized trial. Microbial Ecol Health Dis 28:1357417

    Article  CAS  Google Scholar 

  • Preti G, Huggins GR, Bares J (1978) Analysis of human vaginal secretions by gas chromatography-mass spectrometry. Isr J Chem 17:215–222

    Article  CAS  Google Scholar 

  • Qiagen (2013) Vaginal flora DNA qPCR array (BAID-1902ZRA) product information leaflet

    Google Scholar 

  • Rutherford PC, Narkowicz JE, Wood JC, Peel MM (1988) Peritonitis caused by Pseudomonas mesophilica in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 26:2441–2443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanhueza E, Andreae MO (1991) Emission of formic acid and acetic acids from tropical Savanna soils. Geophys Res Lett 18:1707–1710

    Article  CAS  Google Scholar 

  • Schäfer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot 61:315–334

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg JJ, Links MG, Hill JE, Dumonceaux TJ, Kimani J, Jaoko W, Wachihi C, Mungai JN, Peters GA, Tyler S, Graham M, Severini A, Fowke KR, Ball TB, Plummer FA (2011) Molecular detection of vaginal microbiota in East African commercial sex workers. Appl Environ Microbiol 77:4066–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasu M, Nagai S, Hayashi R, Ochiai A, Touhara K (2009) Dimethyl trisulfide as a characteristic odor associated with fungating cancer wounds. Biosci Biotechnol Biochem 73:2117–2120

    Article  CAS  PubMed  Google Scholar 

  • Smet E, Lens E, van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol 28:89–117

    Article  CAS  Google Scholar 

  • Smith TJ, Murrell JC (2011) Mutagenesis of soluble methane monooxygenase. Methods Enzymol 495:135–147

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Eng RHK, Forrester C (1985) Pseudomonas mesophilica infections in humans. J Clin Microbiol 21:314–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez FL, Springfeld J, Levitt MD (1999) Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut 43:100–104

    Article  Google Scholar 

  • Talou T, Gaset A, Delmas M, Kulifaj M, Montant C (1990) Dimethyl sulfide: the secret for black truffle hunting by animals? Mycol Res 94:277–278

    Article  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tonzetich J (1973) The uptake and metabolism of 35 S-labeled volatile sulfur compounds by putrescent saliva. Biochem Med 7:52–60

    Article  CAS  PubMed  Google Scholar 

  • Truant AL, Gulati R, Giger O, Satishchandran V, Caya JG (1998) Methylobacterium species: an increasingly important opportunistic pathogen. Lab Med 29:704–710

    Article  Google Scholar 

  • Turner C, Spanel P, Smith D (2006) A longitudinal study of methanol in the exhaled breath of healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas 27:637–648

    Article  PubMed  Google Scholar 

  • Tymczyna L, Chmielowiec-Korzeniowska A, Drabik A, Skórska C, Sitkowska J, Cholewa G, Dutkiewicz J (2007) Efficacy of a novel biofilter in hatchery sanitation: II. Removal of odorogenous pollutants. Ann Agric Environ Med 14:151–157

    CAS  PubMed  Google Scholar 

  • Usha PR, Naidu MU (2004) Randomised, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clin Drug Investig 24:353–363

    Article  CAS  PubMed  Google Scholar 

  • Uy MM, Uy J, Castro CZR, Carvajal TM, Ho HT, Lee AC (2013) Pink pigmented facultative methylotrophic (PPFM) bacteria isolated from the human scale and nasal cavity. Philipp J Syst Biol 7:13–21

    Google Scholar 

  • van Langenhove HR, van Wassenhove FA, Coppin JK, van Acker MR, Schamp NM (1982) Gas chromatography/mass spectrometry identification of organic volatiles contributing to rendering odors. Environ Sci Technol 16:883–886

    Article  PubMed  Google Scholar 

  • Wang H, Altemus J, Niazi F, Green H, Calhoun BC, Sturgis C, Grobmyer SR, Eng C (2017) Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 8:88122–88138

    PubMed  PubMed Central  Google Scholar 

  • Warnke PH, Terheyden H, Açil Y, Springer IN, Sherry E, Reynolds M, Russo PAJ, Bredee JP, Podschun R (2003) Tumor smell reduction with antibacterial essential oils. Cancer 100:879–880

    Article  Google Scholar 

  • Waturangi DE, Nicholas CD, Susanto DO, Suhartono MT (2011) Isolation and identification of methylotrophic bacteria producing methanol dehydrogenase from human feet and mouth. HAYATI J Biosci 18:11–15

    Article  Google Scholar 

  • Weon HY, Kim BY, Joa JH, Son JA, Song MH, Kwon SW, Go SJ, Yoon SH (2008) Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 58:93–96

    Article  CAS  PubMed  Google Scholar 

  • Weyers S, Verstraelen H, Gerris J, Monstrey S, dos Santos Lopes Santiago G, Saerens B, De Backer E, Claeys G, Vaneechoutte M, Verhelst R (2009) Microflora of the penile skin-lined neovagina of transsexual women. BMC Microbiol 9:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams MP (1973) Dimethyl sulfide: methodology, precursor kinetics and vegetable production evaluation. PhD thesis, Perdue University, USA

    Google Scholar 

  • Wolrath H, Forsum U, Larsson PG, Borén H (2001) Analysis of bacterial vaginosis-related amines in vaginal fluid by gas chromatography and mass spectrometry. J Clin Microbiol 39:4026–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood AP, Kelly DP (2010) Skin microbiology, body odor, and methylotrophic bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Wood AP, Warren FJ, Kelly DP (2010) Methylotrophic bacteria in trimethylaminuria and bacterial vaginosis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Xuan C, Shamonki JM, Chung A, DiNome ML, Chung M, Sieling PA, Lee DJ (2016) Microbial dysbiosis is associated with human breast cancer. PLoS One 9:e83744

    Article  CAS  Google Scholar 

  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–199

    Article  CAS  PubMed  Google Scholar 

  • Yadzi HR, Movafagh A, Fallah F, Shargh SA, Mansouri N, Pour AH, Hashemi M (2016) Evaluation of Methylobacterium radiotolerance [sic.] and Sphingomonas yanoikuyae in sentinel lymph nodes of breast cancer cases. Asian Pac J Cancer Prev 17:279–285

    Article  Google Scholar 

Download references

Acknowledgments

I thank Dr. Ann P Wood (formerly of King’s College London, UK) for stimulating discussions on methylotrophy and human disease and Dr. Michael J Cox (Imperial College London, UK) for insight on methylotrophic contamination of molecular studies. I also thank Dr. Lee P Hutt (University of Plymouth, UK) for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rich Boden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boden, R. (2019). Methanotrophy, Methylotrophy, the Human Body, and Disease. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics