Skip to main content

Motivation

  • Chapter
  • First Online:
Likelihood-Free Methods for Cognitive Science

Abstract

In this chapter, we provide an overview of various approaches for performing inference on cognitive models. Namely, we discuss the connections between approximate least squares, maximum likelihood estimate, and Bayesian statistics. We then use the comparisons across these methods to motivate the concept of approximate Bayesian computation. We close with an overview and plan for the remainder of the book.

What I cannot create, I do not understand.

Richard Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will use the notational convention that a variable name without subscripts such as y or x may be either vector or scalar valued; context should make clear which. If a variable is subscripted, such as y i or x i , it represents either an element of a vector or a scalar.

  2. 2.

    Don’t confuse the probability (or density) function f Y (y | θ) with the model structure f(x, θ). The predictions of the model, described by f(x, θ) are not necessarily the same as the probability of the data given by f Y (y | θ), though they were the same for the high-threshold model above. For the simple regression model, however, f(x, {m, b}) = mx + b, while most applications of regression state that y is normally distributed with mean mx + b and some standard deviation σ. In this case, f Y (y | x, m, b, σ) is the normal density function that sketches out the bell curve.

References

  1. S. Lewandowsky, S. Farrell, Computational Modeling in Cognition: Principles and Practice (SAGE Publications, Thousand Oaks, CA, 2010)

    Google Scholar 

  2. W.H. Batchelder, D.M. Riefer, Psychol. Rev. 97, 548 (1990)

    Article  Google Scholar 

  3. W.H. Batchelder, D.M. Riefer, Psychon. Bull. Rev. 6, 57 (1999)

    Article  PubMed  Google Scholar 

  4. S. Dennis, M. Lee, A. Kinnell, J. Math. Psychol. 59, 361 (2008)

    Google Scholar 

  5. I. Klugkist, O. Laudy, H. Hoijtink, Psychol. Methods 15, 281 (2010)

    Article  PubMed  Google Scholar 

  6. P.S. Laplace, Stat. Sci. 1(3), 364 (1774/1986). http://dx.doi.org/10.1214/ss/1177013621

    Article  Google Scholar 

  7. J.O. Berger, J.M. Bernardo, D. Sun, Bayesian Anal. 10(1), 189 (2015). http://dx.doi.org/10.1214/14-BA915

    Article  Google Scholar 

  8. M.W. Howard, M.J. Kahana, J. Math. Psychol. 46, 269 (2002)

    Article  Google Scholar 

  9. P.B. Sederberg, M.W. Howard, M.J. Kahana, Psychol. Rev. 115, 893 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  10. A.H. Criss, J.L. McClelland, J. Mem. Lang. 55, 447 (2006)

    Article  Google Scholar 

  11. K.J. Malmberg, R. Zeelenberg, R. Shiffrin, J. Exp. Psychol. Learn. Mem. Cogn. 30, 540 (2004)

    Article  PubMed  Google Scholar 

  12. J.K. Pritchard, M.T. Seielstad, A. Perez-Lezaun, M.W. Feldman, Mol. Biol. Evol. 16, 1791 (1999)

    Article  PubMed  Google Scholar 

  13. M.A. Beaumont, Annu. Rev. Ecol. Evol. Syst. 41, 379 (2010)

    Article  Google Scholar 

  14. D. Wegmann, C. Leuenberger, L. Excoffier, Genetics 182, 1207 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  15. D.L. Hintzman, Behav. Res. Methods Instrum. Comput. 16, 96–101 (1984)

    Article  Google Scholar 

  16. C.F. Sheu, J. Math. Psychol. 36, 592 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palestro, J.J., Sederberg, P.B., Osth, A.F., Zandt, T.V., Turner, B.M. (2018). Motivation. In: Likelihood-Free Methods for Cognitive Science. Computational Approaches to Cognition and Perception. Springer, Cham. https://doi.org/10.1007/978-3-319-72425-6_1

Download citation

Publish with us

Policies and ethics