Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 565 Accesses

Abstract

So far, a CFD model of a centrifugal compressor has been implemented in Star-CCM+ [1], taking as a reference the setup used by Mendonça et al. [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. STAR-CCM+. Release version 9.02.005. CD-adapco (2014), http://www.cd-adapco.com

  2. F. Mendonça, O. Baris, G. Capon, Simulation of radial compressor aeroacoustics using CFD. In Proceedings of ASME Turbo Expo 2012. GT2012-70028, ASME, 2012, pp. 1823–1832 (2012). https://doi.org/10.1115/GT2012-70028

  3. X.Q. Zheng, J. Huenteler, M.Y. Yang, Y.J. Zhang, T. Bamba, Influence of the volute on the flow in a centrifugal compressor of a high-pressure ratio turbocharger. Proc. Inst. Mech. Eng. Part A J. Power Energy 224(8), 1157–1169 (2010). https://doi.org/10.1243/09576509JPE968, http://pia.sagepub.com/content/224/8/1157.full.pdf+html

  4. J. Benajes, J. Galindo, P. Fajardo, R. Navarro, Development of a segregated compressible flow solver for turbomachinery simulations. J. Appl. Fluid Mech. 7(4), 673–682 (2014)

    Google Scholar 

  5. K. Hillewaert, R. Van den Braembussche, Numerical simulation of impeller-volute interaction in centrifugal compressors. J. Turbomach. 121, 603 (1999)

    Google Scholar 

  6. Z. Liu, D. Hill, Issues surrounding multiple frames of reference models for turbo compressor applications. In: Fifteenth International Compressor Engineering Conference, Purdue University, 2000

    Google Scholar 

  7. J. Galindo, P. Fajardo, R. Navarro, L.M. García-Cuevas, Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Appl. Energy 103, 116–127 (2013). https://doi.org/10.1016/j.apenergy.2012.09.013

  8. M. Padzillah, S. Rajoo, R. Martinez-Botas, Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions. Energy Convers. Manage. 80(0), 416–428 (2014). ISSN 0196-8904. https://doi.org/10.1016/j.enconman.2014.01.047

  9. B. Semlitsch, V. JyothishKumar, M. Mihaescu, L. Fuchs, E. Gutmark, M. Gancedo, Numerical flow analysis of a centrifugal compressor with ported and without ported shroud. SAE Technical Paper 2014-01-1655 (2014). https://doi.org/10.4271/2014-01-1655

  10. Y. Bousquet, X. Carbonneau, G. Dufour, N. Binder, I. Trebinjac, Analysis of the unsteady flow field in a centrifugal compressor from peak efficiency to near stall with full-annulus simulations. Int. J. Rotating Mach. 2014, 11 (2014). https://doi.org/10.1155/2014/729629

  11. K. Jiao, H. Sun, X. Li, H. Wu, E. Krivitzky, T. Schram, L. Larosiliere, Numerical simulation of air flow through turbocharger compressors with dual volute design. Appl. Energy 86(11), 2494–2506 (2009). ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2009.02.019

  12. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite volume method, 2nd edn. (Pearson Education Limited, Harlow, 2007)

    Google Scholar 

  13. M. Gageik, I. Klioutchnikov, H. Olivier, Comprehensive mesh study for a direct numerical simulation of the transonic flow at \(Re_c = 500{,}000\) around a NACA 0012 airfoil. Comput. Fluids 122, 153–164 (2015). https://doi.org/10.1016/j.compfluid.2015.08.030

  14. S. Hoyas, J. Jiménez, Scaling of the velocity fluctuations in turbulent channels up to \(Re_{\tau }= 2003\). Phys. Fluids (1994–Present) 18(1), 4 (2006). https://doi.org/10.1063/1.2162185

  15. D.C. Wilcox, Turbulence Modeling for CFD (Hardcover), 3rd edn. (La Cañada, California, DCW Industries Inc., 2006)

    Google Scholar 

  16. J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Google Scholar 

  17. J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(02), 453–480 (1970)

    Google Scholar 

  18. C.A. Wagner, T.Hüttl, P. Sagaut (eds.), Large-Eddy Simulation for Acoustics (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  19. G. Dufour, N. Gourdain, F. Duchaine, O. Vermorel, L. Gicquel, J.F. Boussuge, T. Poinsot, Large eddy simulation applications. In Numerical Investigations in Turbomachinery: A State of the Art. VKI Lecture Series (2009)

    Google Scholar 

  20. A. Karim, K. Miazgowicz, B. Lizotte, A. Zouani, Computational aero-acoustics simulation of compressor whoosh noise in automotive turbochargers. SAE Technical Paper 2013-01-1880 (2013). https://doi.org/10.4271/2013-01-1880

  21. F. Hellström, E. Guillou, M. Gancedo, R. DiMicco, A. Mohamed, E.Gutmark, L. Fuchs, Stall development in a ported shroud compressor using PIV measurements and large eddy simulation. Technical Report. SAE Technical Paper 2010-01-0184 (2010). https://doi.org/10.4271/2010-01-0184

  22. F. Hellstrom, E. Gutmark, L. Fuchs, Large eddy simulation of the unsteady flow in a radial compressor operating near surge. J. Turbomach. 134(5), 10 (2012). https://doi.org/10.1115/1.4003816

  23. V. Jyothishkumar, M. Mihaescu, B. Semlitsch, L. Fuchs, Numerical flow analysis in centrifugal compressor near surge condition. In Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, 2013, p. 13. https://doi.org/10.2514/6.2013-2730

  24. R. Aghaei, A.M. Tousi, A. Tourani, Comparison of turbulence methods in CFD analysis of compressible flows in radial turbomachines. Aircr. Eng. Aerosp. Technol. 80(6), 657–665 (2008). https://doi.org/10.1108/00022660810911608

  25. O. Borm, B. Balassa, H.-P. Kau, Comparison of different numerical approaches at the centrifugal compressor RADIVER. In 20th ISABE Conference. ISABE-2011-1242, International Society for Airbreathing Engines, 2011

    Google Scholar 

  26. L. Mangani, E. Casartelli, S. Mauri, Assessment of various turbulence models in a high pressure ratio centrifugal compressor with an object oriented CFD code. J. Turbomach. 134(6), 10 (2012). https://doi.org/10.1115/1.4006310

  27. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Google Scholar 

  28. F.R. Menter, R. Langtry, T. Hansen, CFD simulation of turbomachinery flows-verification, validation and modeling. In European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2004

    Google Scholar 

  29. C. Robinson, M. Casey, B. Hutchinson, R. Steed, Impeller-diffuser interaction in centrifugal compressors. In Proceedings of ASME Turbo Expo 2012. GT2012-69151, ASME, 2012

    Google Scholar 

  30. P.E. Smirnov, T. Hansen, F.R. Menter, Numerical simulation of turbulent flows in centrifugal compressor stages With different radial gaps. In Proceedings of GT2007. GT2007-27376, ASME, 2007. https://doi.org/10.1115/GT2007-27376

  31. R.N. Pinto, A. Afzal, L.V. D’Souza, Z. Ansari, A.D. Mohammed Samee, Computational fluid dynamics in turbomachinery: a review of state of the art. Arch. Comput. Methods Eng. 24(3), 467–479. ISSN 1886-1784. https://doi.org/10.1007/s11831-016-9175-2

  32. P.G. Tucker, Computation of unsteady turbomachinery flows: part 2-LES and hybrids. Prog. Aerosp. Sci. 47(7), 546–569 (2011). https://doi.org/10.1016/j.paerosci.2011.07.002

  33. Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63(1–4), 293–313 (2000)

    Google Scholar 

  34. M.L. Shur, P.R. Spalart, M.K. Strelets, A.K. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001

  35. A.K. Travin, M.L. Shur, P.R. Spalart, M.K. Strelets, Improvement of delayed detached-eddy simulation for LES with wall modelling. In European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), 2006

    Google Scholar 

  36. C. Mockett, A comprehensive study of detached-eddy simulation. Ph.D. thesis, Technische Universität Berlin, 2009

    Google Scholar 

  37. R. van Rennings, K. Shi, S. Fu, F. Thiele. Delayed-detached-eddy simulation of near-stall axial compressor flow with varying passage numbers. In Progress in Hybrid RANS-LES Modelling, ed. by S. Fu, W. Haase, S.-H. Peng, D. Schwamborn. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 117 (Springer, Berlin Heidelberg, 2012), pp. 439–448. ISBN 978-3-642-31817-7. https://doi.org/10.1007/978-3-642-31818-4_38

  38. Q. Guo, H. Chen, X.C. Zhu, Z.H. Du, Y. Zhao, Numerical simulations of stall inside a centrifugal compressor. Proc. Inst. Mech. Eng. Part A J. Power Energy 221(5), 683–693 (2007). https://doi.org/10.1243/09576509JPE417

  39. H. Chen, S. Guo, X.C. Zhu, Z.H. Du, S. Zhao, Numerical simulations of onset of volute stall inside a centrifugal compressor. In Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, ASME, 2008

    Google Scholar 

  40. Y. Lee, D. Lee, Y. So, D. Chung, Control of airflow noise from diesel engine turbocharger. SAE Technical Paper 2011-01-0933 (2011). https://doi.org/10.4271/2011-01-0933

  41. I. Tomita, S. Ibaraki, M. Furukawa, K. Yamada, The effect of tip leakage vortex for operating range enhancement of centrifugal compressor. In Proceedings of ASME Turbo Expo 2012. GT2012-68947, ASME, 2012

    Google Scholar 

  42. A. Zamiri, B.J. Lee, J.T. Chung, Numerical investigation of the inclined leading edge oiffuser vane effects on the flow unsteadiness and noise characteristics in a transonic centrifugal compressor. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017-65117 2017, p. 15. https://doi.org/10.1115/GT2017-65117

  43. B. Greschner, J. Grilliat, M.C. Jacob, F. Thiele, Measurementsand wall modeled LES simulation of trailing edge noise caused by a turbulent boundary layer. Int.J. Aeroacoustics 9(3), 329–356 (2010). https://doi.org/10.1260/1475-472X.9.3.329

  44. Ferziger, J.H. Peric, M, Computational Methods for Fluid Dynamics, 3rd rev. (Springer, Berlin, 2002)

    Google Scholar 

  45. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. (Springer, Berlin, 1999)

    Google Scholar 

  46. J. Sachdev, A. Hosangadi, V. Sankaran, Improved flux formulations for unsteady low mach number flows. In Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, June 2012. https://doi.org/10.2514/6.2012-3067

  47. F. Mendonça, Industrial Aeroacoustics Analyses. ed. by C.A. Wagner, T. Hüttl, P. Sagaut. In Large-Eddy Simulation for Acoustics (Cambridge University Press, Cambridge, 2007), chap. 6.8, pp. 356–377

    Google Scholar 

  48. ANSYS Inc., ANSYS FLUENT 12.0 User’s Guide (ANSYS Inc., Canonsburg, 2009)

    Google Scholar 

  49. G. Després, G.N. Boum, F. Leboeuf, D. Chalet, P. Chesse, A. Lefebvre, Simulation of near surge instabilities onset in a turbocharger compressor. Proc. Inst. Mech. Eng. Part A J. Power Energy 227(6), 665–673 (2013). https://doi.org/10.1177/0957650913495537

  50. T. Turunen-Saaresti, J. Larjola, Measured and calculated unsteady pressure field in a vaneless diffuser of a centrifugal compressor. ed. by K.C. Hall, R.E. Kielb, J.P. Thomas. In Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (Springer, Dordrecht, 2006), pp. 493–503

    Google Scholar 

  51. H. Pitkänen, H. Esa, P. Sallinen, J. Larjola, H. Heiska, T. Siikonen, Time-accurate CFD analysis of a centrifugal compressor. In Fourth International Symposium on Experimental and Computational Aerodynamics of Internal Flows, Dresden August vol. 31, 1999 pp. 130–139

    Google Scholar 

  52. S. Fontanesi, S. Paltrinieri, G. Cantore, CFD analysis of the acoustic behavior of a centrifugal compressor for high performance engine application. Energy Procedia 45(0) (2014). ATI 2013—68th Conference of the Italian Thermal Machines Engineering Association, pp. 759–768. https://doi.org/10.1016/j.egypro.2014.01.081

  53. P.R. Spalart, Young-Person’s guide to detached-eddy simulation grids. Technical Report, NASA (Langley Research Center), 2001

    Google Scholar 

  54. R.M. Cummings, S.A. Morton, D.R. McDaniel, Experiences in accurately predicting time-dependent flows. Prog. Aerosp. Sci. 44(4), 241–257 (2008). ISSN 0376-0421. https://doi.org/10.1016/j.paerosci.2008.01.001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Navarro García .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navarro García, R. (2018). Sensitivity of Compressor Noise Prediction to Numerical Setup. In: Predicting Flow-Induced Acoustics at Near-Stall Conditions in an Automotive Turbocharger Compressor. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-72248-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72248-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72247-4

  • Online ISBN: 978-3-319-72248-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics