Skip to main content

Mitigation of Ozone Stress

  • Chapter
  • First Online:
Tropospheric Ozone and its Impacts on Crop Plants

Abstract

The photochemical reactions leading to O3 formation and the variables on which these reactions depend are undergoing rapid alterations owing to the present climate change scenario. The multifarious set-up related to O3 formation in the troposphere makes it difficult to check the continuously increasing concentration of O3 around the globe. O3 concentration has already crossed the standard limit for vegetation set by European Union (EU) in most of the parts of the World, which is evident by a number of O3 induced crop yield reduction studies. Therefore the demand of the time is to develop certain strategies that will help in alleviating the deleterious effects of O3 on plant performance. This target can be achieved by adopting different approaches such as improved agronomic practices; selection of O3 resistant cultivars, improving photosynthetic efficiencies of O3 exposed plants etc. Several strategies have been followed to achieve these targets, important ones being CO2 fertilization and soil nutrient amendments. In addition to this, air quality management practices using CH4 emission control is also considered to be an important strategy in minimizing O3 induced stress in plants. It has been shown that CO2 fertilization increased the carbon input which can be incorporated in plant biomass and subsequently helps in maintaining yield of plants exposed to O3 stress. Treatment of additional nutrient helps in the repair of the O3 injured plants thus sustaining their yield. As apparent through a number of studies, these strategies have proved quite efficient in partially mitigating O3 stress in plants. However, more experimentation is required before confirming the use of these approaches in mitigating O3 injury and implementing them in daily agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdElgawad H, Zinta G, Beemster GTS, Janssens IA, Asard H (2016) Future climate CO2 level mitigate stress impact on plants: increased defense or decreased challenge? Front Plant Sci 7:556–562

    Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ. 30:258–270

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision (Vol. 12). ESA Working Paper

    Google Scholar 

  • Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice JC, Nogues S, Araus JL, Martinez-Carrasco R, Perez P (2011) Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J Exp Bot 62:3957–3969

    Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011a) Global crop yield reductions due to surface ozone exposure: 1. year 2000 crop production losses and economic damage. Atmos Environ 45:2284–2296

    Article  CAS  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011b) Global crop yield reductions due to surface ozone exposure: 2 year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309

    Article  CAS  Google Scholar 

  • Avnery S, Mauzerall DL, Fiore AM (2013) Increasing global agricultural production by reducing ozone damages via methane emission controls and ozone resistant cultivar selection. Glob Chang Biol 19:1285–1299

    Article  Google Scholar 

  • Biswas DK, Xu H, Li YG, Liu MZ, Chen YH, Sun JZ, Jiang GM (2008) Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. J Exp Bot 59:951–963

    Article  CAS  Google Scholar 

  • Black VJ, Stewart CA, Roberts JA, Black CR (2012) Timing of exposure to ozone affects reproductive sensitivity and compensatory ability in Brassica campestris. Environ Exp Bot 75:225–234

    Article  CAS  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning WJ, Krupa S, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351

    Article  CAS  Google Scholar 

  • Bortolin RC, Caregnato FF, Divan AM Jr, Reginatto FH, Gelain DP, Moreira JC (2014) Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum. Ecotoxicol Environ Saf 100:114–121

    Article  CAS  Google Scholar 

  • Broberg M (2015) Effects of elevated ozone and carbon dioxide on wheat crop yield – meta-analysis and exposure-response relationships. Degree project for masters of science. University of Gothenberg, Gothenburg

    Google Scholar 

  • Bunce JA (2014) Limitations to soybean photosynthesis at elevated carbon dioxide in free-air enrichment and open top chamber systems. Plant Sci 226:131–135

    Article  CAS  Google Scholar 

  • Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut. II. Seed yield and quality. Crop Sci 47:1488–1497

    Article  CAS  Google Scholar 

  • Cardoso-Vilhena J, Balaguer L, Eamus D, Ollerenshaw J, Barnes J (2004) Mechanisms underlying the amelioration of O3-induced damage by elevated atmospheric concentrations of CO2. J Exp Bot 55(397):771–781

    Article  CAS  Google Scholar 

  • Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in late Miocene. Nature 361:344–345

    Article  Google Scholar 

  • Cofala J, Amann M, Klimont Z, Kupiainen K, Höglund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos Environ 41:8486–8499

    Article  CAS  Google Scholar 

  • Danh NT, Huy LH, Oanh NTK (2016) Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam. Sci Total Environ 566-567:1069–1079

    Article  CAS  Google Scholar 

  • Degener JF (2015) Atmospheric CO2 fertilization effects on biomass yield of 10 crops in northern Germany. Front Environ Sci. 3:48–61

    Article  Google Scholar 

  • Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I (2016) Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 39(3):329–338

    Article  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65:3783–3798

    Article  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single cell C4 photosynthesis versus the dual cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  CAS  Google Scholar 

  • Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW (1991) Climate change and the evolution of C4 photosynthesis. Trends Ecol Evol. 6:95–99

    Article  CAS  Google Scholar 

  • Farfan-Vignolo ER, Asard H (2012) Effect of elevated CO2 and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicagosativa L. Plant Physiol Biochem 59:55–62

    Article  CAS  Google Scholar 

  • Feng Z, Hu E, Wang X, Jiang L, Liu X (2015) Ground-level O3 pollution and its impacts on food crops in China: a review. Environ Pollut 199:42–48

    Article  CAS  Google Scholar 

  • Feng Z, Wang L, Pleijel H, Zhu J, Kobayashi K (2016) Differential effects of ozone on photosynthesis of winter wheat among cultivars depend on antioxidative enzymes rather than stomatal conductance. Sci Total Environ 572:404–411

    Article  CAS  Google Scholar 

  • Fiore AM, West JJ, Horowitz LW, Naik V, Schwarzkopf DM (2008) Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. J Geophys Res 113:D08307

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P et al (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York, pp 129–234

    Google Scholar 

  • Furbank RT, vonCaemmerer S, Sheehy J, Edwards G (2009) C4 rice: a challenge for plant phenomics. Funct Plant Biol 36:845–856

    Article  Google Scholar 

  • Gerosa G, Marzuoli R, Rossini M, Panigada C, Meroni M, Colombo R, Faoro F, Iriti M (2009) A flux-based assessment of the effects of ozone on foliar injury, photosynthesis, and yield of bean (Phaseolus vulgaris L. cv. Borlotto Nano Lingua di Fuoco) in open-top chambers. Environ Pollut 157:1727–1736

    Article  CAS  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Elevated carbondioxide increases contents of flavonoids and phenolic compounds and antioxidant activities in Malaysian young ginger (Zingiber officinale roscoe.) varieties. Molecules 15:7907–7922

    Article  CAS  Google Scholar 

  • Ghude SD, Jena CK, Beig G, Kumar R, Kulkarni SH, Chate DM (2016) Impact of emission mitigation on ozone-induced wheat and rice damage in India. Curr Sci 110(8):1452–1458

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez I, Kaminska A, Dodmani M, Goumenaki E, Quarrie S, Barnes JD (2010) Establishing ozone flux-response relationships for winter wheat: analysis of uncertainties based on data for UK and polish genotypes. Atmos Environ 44:621–630

    Article  CAS  Google Scholar 

  • Guo H, Sun Y, Li Y, Tong B, Herris M, Zhu-Salzman K et al (2013) Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Glob Chang Biol 19:3210–3223

    Article  Google Scholar 

  • Hager HA, Ryan GD, Kovacs HM, Newman JA (2016) Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses. BMC Ecol 16:28–40

    Article  Google Scholar 

  • Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423

    Article  CAS  Google Scholar 

  • Heck WW (1989) Assessment of crop losses from air pollutants in the United States. In: MacKenzie JJ, El-Ashry MT (eds) Air pollution's toll on forests and crops. Yale University Press, New Haven, pp 235–315

    Google Scholar 

  • Heagle AS, Miller JE, Pursley WA (2000) Growth and Yield Responses of Winter Wheat to Mixtures of Ozone and Carbon Dioxide. Crop Sci 40:1656–1664

    Article  CAS  Google Scholar 

  • Hodges DM, Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51:645–655

    Article  CAS  Google Scholar 

  • Hogy P, Brunnbauer M, Koehler P, Schwadorf K, Breuer J, Franzaring J, Zhunusbayeva D, Fangmeier A (2013) Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment. Environ Exp Bot 88:11–18

    Article  Google Scholar 

  • Horowitz LW, Walters S, Mauzerall DL et al (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, Version 2. J Geophys Res 108:4784. https://doi.org/10.1029/2002JD002853

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Bouschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of intergovermental panel on climate change. Camebridge University Press, Cambridge/New York

    Google Scholar 

  • Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A (2014) Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity. Sci World J 2014:360290–360213

    Google Scholar 

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    Article  CAS  Google Scholar 

  • Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26

    Article  Google Scholar 

  • Jagadish KSV, Kadam NN, Xiao G, Melgar RJ, Bahuguna RN, Quinones C et al (2014) Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. AdvAgron 127:111–156. https://doi.org/10.1016/B978-0-12-800131-8.00003-0

  • Kajala K, Covshoff S, Karki S, Woodfield H, Tolley BJ, Dionora MJA, Mogul RT, Mabilangan AE, Danila FR, Hibberd JM, Quick WP (2011) Strategies for engineering a two-celled C4 photosynthetic pathway in to rice. J Exp Bot 62:3001–3010

    Article  CAS  Google Scholar 

  • Kant S, Seneweera S, Rodin J, Materne M, Burch D, Rothstein SJ, Spangenberg G (2012) Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies. Front Plant Sci 3(162):1–9

    Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ. 29:1033–1048

    Article  CAS  Google Scholar 

  • Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122

    Article  CAS  Google Scholar 

  • Krupa SV, Tonneijck AEG, Manning WJ (1998) Ozone. In: Flagler RB (ed) Recognition of air pollution injury to vegetation: a pictorial atlas. Air & Waste Management Association, Pittsburgh, pp 2–28

    Google Scholar 

  • Kumar M (2016) Impact of climate change on crop yield and role of model for achieving food security. Environ Monit Assess 188:465–478

    Article  Google Scholar 

  • Kumari S, Agrawal M (2014) Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions. Ecotoxicol Environ Saf 101:146–156

    Article  CAS  Google Scholar 

  • Kumari S, Agrawal M, Tiwari S (2013) Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut 174:279–288

    Article  CAS  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  Google Scholar 

  • Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotechnol J 1:43–50

    Article  CAS  Google Scholar 

  • Liu Z, Chen W, Fu W, He X, Fu S, Lu T (2016) Effects of elevated CO2 and O3 on leaf area, gas exchange and starch contents in Chinese pine (Pinus tabulaeformis Carr) in northern China. Bangladesh J Bot 44(5):917–923

    Google Scholar 

  • Long SP, Drake BG (1991) Effect of the long –term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge, Scirpusolneyi. Plant Physiol 96:221–226

    Article  CAS  Google Scholar 

  • Manigbas NL, Park D-S, Park S-K, Kim S-M, Hwang W-H, Kang H-W, Yi G (2013) Development of a fast and reliable ozone screening method in rice (Oryza sativa L.) Afr J Crop Sci 1(1):11–17

    Google Scholar 

  • Markelz RC, Lai LX, Vosseler LN, Leakey AD (2014) Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply. Plant Cell Environ. 37:886–898

    Article  CAS  Google Scholar 

  • Mishra AK, Agrawal SB (2014) Cultivar specific response of CO2 fertilization on two tropical mungbean (Vigna radiata L.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. J Agron Crop Sci. 20:273–289

    Article  Google Scholar 

  • Mishra AK, Rai R, Agrawal S (2013a) Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system. Indian J Biochem Biophys 50:139–149

    Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013b) Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: Growth, yield and grain quality. Field Crop Res 145:21–32

    Article  Google Scholar 

  • Miyao M, Masumoto C, Miyazawa SI, Fukayama H (2011) Lessons from engineering a single cell C4 photosynthetic pathway in to rice. J Exp Bot 62:3021–3029

    Article  CAS  Google Scholar 

  • Monga R, Marzuoli R, Alonso R, Bermejo V, Gonzalez-Fernandez I, Faoro F, Gerosa G (2015) Varietal screening of ozone sensitivity in Mediterranean durum wheat (Triticum durum Desf.) Atmos Environ 110:18–26

    Article  CAS  Google Scholar 

  • Monks PS, Archibald TA, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS, Tarasova O, Thouret V, von Schneidemesser E, Sommariva R, Wild O, Williams ML (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys 15:8889–8973

    Article  CAS  Google Scholar 

  • Niu J, Feng Z, Zhang W, Zhao P, Wang X (2014) Non-stomatal limitation to photosynthesis in Cinnamomum camphoras seedlings exposed to elevated O3. PLoS One 9(6):e98572

    Article  Google Scholar 

  • Osborne SA, Mills G, Hayes F, Ainsworth EA, Buker P, Embersen L (2016) Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose– response data. Glob Chang Biol 22:3097–3111

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M et al (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol 19:2303–2338

    Article  Google Scholar 

  • Phothi R, Umponstira C, Sarin C, Siriwong W, Nabheerong N (2016) Combining effects of ozone and carbon dioxide application on photosynthesis of Thai jasmine rice (Oryza Sativa L.) cultivar Khao Dawk Mali 105. Aust J Crop Sci 10(4):591–597

    Article  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2 concentrating mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering in to plants. J Exp Bot 59:1441–1461

    Article  CAS  Google Scholar 

  • Ribeiro DM, Araujo WL, Fernie AR, Schippers JHM, Mueller- Roeber B (2012) Action of Gibberellins on growth and metabolism of Arabidopsis plants associated with high concentration of carbon dioxide. Plant Physiol 160:1781–1794

    Article  CAS  Google Scholar 

  • Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plantarthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336

    Google Scholar 

  • Sage RF, Christin PA, Edwards EJ (2011) The C4 plant lineages of planet Earth. J Exp Bot 62:3155–3169

    Article  CAS  Google Scholar 

  • Saitanis CJ, Bari SM, Burkey KO, Stamatelopoulos D, Agathokleous E (2014) Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environ Sci Pollut Res 21(23):13560–13571

    Article  CAS  Google Scholar 

  • Sanz-Sáez Á, Erice G, Aranjuelo I, Aroca R, Ruíz-Lozano JM, Aguirreolea J et al (2013) Photosynthetic and molecular markers of CO2- mediated photosynthetic down regulation in nodulated alfalfa. J Integr Plant Biol 55:721–734

    Article  Google Scholar 

  • Sarkar A, Datta S, Singh P (2017) Tropospheric Ozone Pollution, Agriculture, and Food Security. In: Singh RP, Singh A, Srivastava V (eds) Environmental issues surrounding human overpopulation. IGI Global, Hershey, pp 234–252

    Google Scholar 

  • Sharma P, Sharma ABJ, Dubey RS, Pessarakli M (2012) Reactive oxygen Species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217–237

    Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189

    Article  CAS  Google Scholar 

  • Singh A, Agrawal M (2015) Effects of ambient and elevated CO2 in growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) GDon. grown under three different soil N levels. Environ Sci Pollut Res 22:3936–3946

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB (2009) Evaluation of physiological growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environ Pollut 157:871–880

    Article  CAS  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agric Ecosyst Environ 135:168–177

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB (2011) Differences in ozone sensitivity at different NPK levels of three tropical varieties of mustard (Brassica campestris L.): photosynthetic pigments, metabolites, and antioxidants. Water Air Soil Pollut. 214:435–450

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2015) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agric Ecosyst Environ 199:26–33

    Article  CAS  Google Scholar 

  • Tai AP, Martin MV, Heald CL (2014) Threat to future global food security from climate change and ozone air pollution. Nat Clim Chang. https://doi.org/10.1038/NCLIMATE2317

  • Tang H, Takigawa M, Liu G, Zhu J, Kobayashi K (2013) A projection of ozone- induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob Chang Biol 19:2739–2752

    Article  Google Scholar 

  • Temme AA, Liu JC, Cornwell WK, Cornelissen JHC, Aerts R (2015) Winners always win: growth of a wide range of plant species from low to future high CO2. Ecol Evol. 5:4949–4961

    Article  Google Scholar 

  • Teng N, Jin B, Wang Q, Hao H, Ceulemans R, Kuang T et al (2009) No detectable maternal effects of elevated CO2 on Arabidopsis thaliana over 15 generations. PLoS One 4:e6035

    Article  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  Google Scholar 

  • Tian H, Ren W, Tao B, Sun G, Chappelka A, Wang X, Pan S, Yang J, Liu J, Felzer BS, Melillo JM, Reilly J (2016) Climate extremes and ozone pollution: a growing threat to China’s food security. Ecosyst Health Sustain 2(1):e01203

    Article  Google Scholar 

  • Tiwari S, Vaish B, Singh P (2017) Population and global food security: issues related to climate change. In: Singh RP, Singh A, Srivastava V (eds) Environmental issues surrounding human overpopulation. IGI Global, Hershey, pp 40–63

    Chapter  Google Scholar 

  • Tiwari S, Rai R, Agrawal M (2008) Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. Int J Remote Sens 9(15):4499–4514

    Article  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  Google Scholar 

  • Urban O, Hrstka M, Zitová M, Holišová P, Šprtová M, Klem K et al (2012) Effect of season, needleage and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies. Plant Physiol Biochem 58:135–141

    Article  CAS  Google Scholar 

  • Van Dingenen R, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of O3 on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) the critical role of potassium in plant stress response. Int J Mol Sci. 14:7370–7390

    Article  CAS  Google Scholar 

  • Weber H, Chetelat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37:877–888

    Article  CAS  Google Scholar 

  • Weigel HJ, Manderscheid R (2012) Crop growth responses to free air CO2 enrichment and nitrogen fertilization: rotating barley, ryegrass, sugar beet and wheat. Eur J Agron 43:97–107

    Article  Google Scholar 

  • Wilkinson S, Mills G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food security? J Exp Bot 63:527–536

    Article  CAS  Google Scholar 

  • Xu Z, Jiang Y, Zhou G (2015) Responses and adaptation of photosynthesis, respiration, antioxidant systems to elevated CO2 with environmental stress in plants. Front Plant Sci 6:701–717

    Google Scholar 

  • Yamaguchi M, Watanabe M, Matsuo N, Naba J, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T (2007a) Effects of nitrogen supply on the sensitivity to O3 of growth and photosynthesis of Japanese beech (Fagus crenata) seedlings. Water Air Soil Pollut 7:131–136

    Article  CAS  Google Scholar 

  • Yamaguchi M, Watanabe M, Iwasaki M, Tabe C, Matsumura H, Kohno Y, Izuta T (2007b) Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. Trees 21:707–718

    Article  CAS  Google Scholar 

  • Zeng J, Sheng H, Liu Y, Wang Y, Wang Y, Kang H, Fan X, Sha L, Yuan S, Zhou Y (2017) high nitrogen supply induces physiological responsiveness to long photoperiod in barley. Front Plant Sci 8:569–580

    Google Scholar 

  • Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I et al (2014) Physiological, biochemical and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Chang Biol 20:3670–3685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Agrawal, M. (2018). Mitigation of Ozone Stress. In: Tropospheric Ozone and its Impacts on Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-71873-6_5

Download citation

Publish with us

Policies and ethics