Skip to main content

Abstract

One of the most intriguing questions in sperm biology is how the 3 f long DNA is packaged into an almost crystalline state in an ordered fashion that retains all its biological functions. Several aspects of this process are known; however, a model for the entire packaging still eludes us. We know that the DNA is packaged into very condensed toroids by protamines that protect it from insults during its journey from the male reproductive tract till the time of fertilization with the oocyte. The DNA is also organized by the sperm nuclear matrix to preserve its function and to direct the replication of the DNA in the embryo after fertilization. This particular level of chromatin packaging may also serve as a checkpoint for DNA integrity. At a higher level, sperm chromosomes appear to occupy discrete domains, with the telomeres of each chromosome paired and located at the periphery of the nucleus and the centromeres at the center. However, there are still many unanswered questions about such chromatin structure. There are several different types of sperm DNA damage assays, and each is sensitive to specific aspects of sperm chromatin structure. Understanding how the chromatin is packaged can therefore help to interpret these assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wyrobek AJ, Meistrich ML, Furrer R, Bruce WR. Physical characteristics of mouse sperm nuclei. Biophys J. 1976;16(7):811–25. https://doi.org/10.1016/S0006-3495(76)85730-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44(4):569–74.

    Article  CAS  PubMed  Google Scholar 

  3. Yanagimachi R, Yanagimachi H, Rogers BJ. The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod. 1976;15(4):471–6.

    Article  CAS  PubMed  Google Scholar 

  4. Wolff HH, Schill WB. Ultrastructural study of human sperm acrosome during acetic acid extraction of acrosin. J Reprod Fertil. 1975;42(2):385–7.

    Article  CAS  PubMed  Google Scholar 

  5. Hud NV, Downing KH, Balhorn R. A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc Natl Acad Sci U S A. 1995;92(8):3581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ward WS, Partin AW, Coffey DS. DNA loop domains in mammalian spermatozoa. Chromosoma. 1989;98(3):153–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kalandadze AG, Bushara SA, Vassetzky YS Jr, Razin SV. Characterization of DNA pattern in the site of permanent attachment to the nuclear matrix located in the vicinity of replication origin. Biochem Biophys Res Commun. 1990;168(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  8. Choudhary SK, Wykes SM, Kramer JA, Mohamed AN, Koppitch F, Nelson JE, et al. A haploid expressed gene cluster exists as a single chromatin domain in human sperm. J Biol Chem. 1995;270(15):8755–62.

    Article  CAS  PubMed  Google Scholar 

  9. Hud NV, Allen MJ, Downing KH, Lee J, Balhorn R. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem Biophys Res Commun. 1993;193(3):1347–54.

    Article  CAS  PubMed  Google Scholar 

  10. Sotolongo B, Lino E, Ward WS. Ability of hamster spermatozoa to digest their own DNA. Biol Reprod. 2003;69:2029–35.

    Article  CAS  PubMed  Google Scholar 

  11. Kuretake S, Kimura Y, Hoshi K, Yanagimachi R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod. 1996;55(4):789–95.

    Article  CAS  PubMed  Google Scholar 

  12. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–6. https://doi.org/10.1093/molehr/gap080.

    Article  CAS  PubMed  Google Scholar 

  13. Mudrak O, Chandra R, Jones E, Godfrey E, Zalensky A. Reorganisation of human sperm nuclear architecture during formation of pronuclei in a model system. Reprod Fertil Dev. 2009;21(5):665–71. https://doi.org/10.1071/RD08269.

    Article  CAS  PubMed  Google Scholar 

  14. Risley MS, Einheber S, Bumcrot DA. Changes in DNA topology during spermatogenesis. Chromosoma. 1986;94(3):217–27.

    Article  CAS  PubMed  Google Scholar 

  15. Barone JG, De Lara J, Cummings KB, Ward WS. DNA organization in human spermatozoa. J Androl. 1994;15(2):139–44.

    CAS  PubMed  Google Scholar 

  16. Nadel B, de Lara J, Finkernagel SW, Ward WS. Cell-specific organization of the 5S ribosomal RNA gene cluster DNA loop domains in spermatozoa and somatic cells. Biol Reprod. 1995;53(5):1222–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kramer JA, Krawetz SA. Nuclear matrix interactions within the sperm genome. J Biol Chem. 1996;271(20):11619–22.

    Article  CAS  PubMed  Google Scholar 

  18. Pardoll DM, Vogelstein B, Coffey DS. A fixed site of DNA replication in eucaryotic cells. Cell. 1980;19(2):527–36.

    Article  CAS  PubMed  Google Scholar 

  19. Berezney R. Visualizing DNA replication sites in the cell nucleus. Semin Cell Biol. 1991;2(2):103–15.

    CAS  PubMed  Google Scholar 

  20. Dijkwel PA, Hamlin JL. Origins of replication and the nuclear matrix: the DHFR domain as a paradigm. Int Rev Cytol. 1995;162A:455–84.

    CAS  PubMed  Google Scholar 

  21. Wilson RH, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells. 2013;18(1):17–31. https://doi.org/10.1111/gtc.12010.

    Article  CAS  PubMed  Google Scholar 

  22. Gerdes MG, Carter KC, Moen PT Jr, Lawrence JB. Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J Cell Biol. 1994;126(2):289–304.

    Article  CAS  PubMed  Google Scholar 

  23. Chang KS, Fan YH, Andreeff M, Liu J, Mu ZM. The PML gene encodes a phosphoprotein associated with the nuclear matrix. Blood. 1995;85(12):3646–53.

    CAS  PubMed  Google Scholar 

  24. Ostermeier GC, Liu Z, Martins RP, Bharadwaj RR, Ellis J, Draghici S, et al. Nuclear matrix association of the human beta-globin locus utilizing a novel approach to quantitative real-time PCR. Nucleic Acids Res. 2003;31(12):3257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martins RP, Ostermeier GC, Krawetz SA. Nuclear matrix interactions at the human protamine domain: a working model of potentiation. J Biol Chem. 2004;279(50):51862–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan JG, Brown DL, Chaly N, Greer WL, Prasad KV, Severini A, et al. Structural and evolutionary implications of the packaging of DNA for differentiation and proliferation in the lymphocyte. J Mol Evol. 1987;26(3):173–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ward WS, Coffey DS. Specific organization of genes in relation to the sperm nuclear matrix. Biochem Biophys Res Commun. 1990;173(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  28. Ward WS, Kimura Y, Yanagimachi R. An intact sperm nuclear matrix may be necessary for the mouse paternal genome to participate in embryonic development. Biol Reprod. 1999;60(3):702–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ward WS, Kishikawa H, Akutsu H, Yanagimachi H, Yanagimachi R. Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote. 2000;8(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  30. Shaman JA, Yamauchi Y, Ward WS. The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem. 2007;102:680–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yamauchi Y, Shaman JA, Ward WS. Topoisomerase II mediated breaks in spermatozoa cause the specific degradation of paternal DNA in fertilized oocytes. Biol Reprod. 2007;76:666–72.

    Article  CAS  PubMed  Google Scholar 

  32. Sotolongo B, Huang TF, Isenberger E, Ward WS. An endogenous nuclease in hamster, mouse and human spermatozoa cleaves DNA into loop-sized fragments. J Androl. 2005;26(2):272–80.

    Article  CAS  PubMed  Google Scholar 

  33. Shaman JA, Prisztoka R, Ward WS. Topoisomerase IIB and an extracellular nuclease interact to digest sperm DNA in an apoptotic-like manner. Biol Reprod. 2006;75:741–8.

    Article  CAS  PubMed  Google Scholar 

  34. Gawecka JE, Boaz S, Kasperson K, Nguyen H, Evenson DP, Ward WS. Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Hum Reprod. 2015;30(12):2725–36. https://doi.org/10.1093/humrep/dev245.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamauchi Y, Shaman JA, Boaz SM, Ward WS. Paternal pronuclear DNA degradation is functionally linked to DNA replication in mouse oocytes. Biol Reprod. 2007;77:407–15.

    Article  CAS  PubMed  Google Scholar 

  36. Ribas-Maynou J, Gawecka JE, Benet J, Ward WS. Double-stranded DNA breaks hidden in the neutral comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance. Mol Hum Reprod. 2014;20(4):330–40. https://doi.org/10.1093/molehr/gat090.

    Article  CAS  PubMed  Google Scholar 

  37. Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, et al. Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res. 2001;9(7):541–67.

    Article  CAS  Google Scholar 

  38. Rives N, Wust S, David B, Duchesne V, Joly G, Mace B. Fluorescence in situ hybridization with chromosome paint probes: a novel approach to assess aneuploidy in human sperm nuclei. J Assist Reprod Genet. 1999;16(1):46–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watson JM, Meyne J, Graves JA. Ordered tandem arrangement of chromosomes in the sperm heads of monotreme mammals. Proc Natl Acad Sci U S A. 1996;93(19):10200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meyer-Ficca M, Muller-Navia J, Scherthan H. Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci. 1998;111(Pt 10):1363–70.

    CAS  PubMed  Google Scholar 

  41. Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma. 1995;103(9):577–90.

    Article  CAS  PubMed  Google Scholar 

  42. Zalensky AO, Tomilin NV, Zalenskaya IA, Teplitz RL, Bradbury EM. Telomere-telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells. Exp Cell Res. 1997;232(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  43. Zalensky AO, Breneman JW, Zalenskaya IA, Brinkley BR, Bradbury EM. Organization of centromeres in the decondensed nuclei of mature human sperm. Chromosoma. 1993;102(8):509–18.

    Article  CAS  PubMed  Google Scholar 

  44. Haaf T, Ward DC. Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res. 1995;219(2):604–11.

    Article  CAS  PubMed  Google Scholar 

  45. Zalenskaya IA, Zalensky AO. Non-random positioning of chromosomes in human sperm nuclei. Chromosom Res. 2004;12(2):163–73.

    Article  CAS  Google Scholar 

  46. Codrington AM, Hales BF, Robaire B. Chronic cyclophosphamide exposure alters the profile of rat sperm nuclear matrix proteins. Biol Reprod. 2007;77(2):303–11.

    Article  CAS  PubMed  Google Scholar 

  47. Schmid C, Heng HH, Rubin C, Ye CJ, Krawetz SA. Sperm nuclear matrix association of the PRM1—>PRM2—>TNP2 domain is independent of Alu methylation. Mol Hum Reprod. 2001;7(10):903–11.

    Article  CAS  PubMed  Google Scholar 

  48. Martins RP, Krawetz SA. Decondensing the protamine domain for transcription. Proc Natl Acad Sci U S A. 2007;104(20):8340–5. https://doi.org/10.1073/pnas.0700076104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Steven Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ward, W.S. (2018). Sperm Nuclear Architecture. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics