Skip to main content

Computational Analysis of Pelvic Floor Dysfunction

  • Chapter
  • First Online:
Women's Health and Biomechanics

Abstract

Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.rhino3d.com/.

  2. 2.

    http://www.salome-platform.org/.

  3. 3.

    http://www.code-aster.org.

References

  1. Corton MM (2009) Anatomy of pelvic floor dysfunction. Obstet Gynecol Clin North Am 36(3):401–419. https://doi.org/10.1016/j.ogc.2009.09.002

    Article  Google Scholar 

  2. Downing SJ, Sherwood OD (1986) The physiological role of relaxin in the pregnant rat. IV. The influence of relaxin on cervical collagen and glycosaminoglycans. Endocrinology 118(2):471–479. https://doi.org/10.1210/endo-118-2-471

  3. Peschers UM, Schaer GN, DeLancey JO et al (1997) Levator ani muscle function before and after childbirth. Brit J Obstet Gynaec 104(9):1004–1008. https://doi.org/10.1111/j.1471-0528.1997.tb12057.x

  4. Petros PEP, Ulmsten UI (1990) Pregnancy effects on the intravaginal sling operation. Acta Obstet Gynecol Scand 69(S153):77–78. https://doi.org/10.1111/j.1600-0412.1990.tb08038.x

  5. Wall LL, Norton PA, DeLancey JOL (1993) Practical Urogynecology. Williams and Wilkins

    Google Scholar 

  6. Lin YH, Liu G, Li M et al (2010) Recovery of continence function following simulated birth trauma involves repair of muscle and nerves in the urethra in the female mouse. Eur Urol 57(3):506–512. https://doi.org/10.1016/j.eururo.2009.03.020

    Article  Google Scholar 

  7. Kane AR, Nager CW (2008) Midurethral sling for stress urinary incontinence. Clin Obstet and Gynecol 51(1):124–135. https://doi.org/10.1097/GRF.0b013e318161e687

    Article  Google Scholar 

  8. Barber MD, Maher C (2013) Epidemiology and outcome assessment of pelvic organ prolapse. Int Urogynecol J 24(11):1783–1790. https://doi.org/10.1007/s00192-013-2169-9

    Article  Google Scholar 

  9. Eliasson K, Larsson T, Mattsson E (2002) Prevalence of stress urinary incontinence in nulliparous elite trampolinists. Scand J Med Sci Sports 12(2):106–110. https://doi.org/10.1034/j.1600-0838.2002.120207.x

  10. Da Roza T, Brandão S, Oliveira D et al (2015) Football practice and urinary incontinence: relation between morphology, function and biomechanics. J Biomech 48(9):1587–1592. https://doi.org/10.1016/j.jbiomech.2015.03.013

    Article  Google Scholar 

  11. Hill AV (1922) The maximum work and mechanical efficiency of human muscles, and their most economical speed. J Physiol 56(1–2):19–41. https://doi.org/10.1113/jphysiol.1922.sp001989

  12. Humphrey JD, Yin FC (1987) On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng 109(4):298–304. https://doi.org/10.1115/1.3138684

  13. Martins JAC, Pires EB, Salvado R et al (1998) A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng 151(3–4):419–433. https://doi.org/10.1016/S0045-7825(97)00162-X

  14. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–410

    Google Scholar 

  15. Yucesoy CA, Koopman BH, Huijing PA et al (2002) Three-dimensional finite element modeling of skeletal muscle using a two domain approach: linked fibre-matrix mesh model. J Biomech 35(9):1253–1262. https://doi.org/10.1016/S0021-9290(02)00069-6

    Article  Google Scholar 

  16. Blemker SS, Delp SL (2005) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33(5):661–673. https://doi.org/10.1007/s10439-005-7385-0

  17. McLean SG, Su A, van der Bogert AJ (2003) Development and validation of a 3-d model to predict knee joint loading during dynamic movement. J Biomech Eng 125(6):864–874. https://doi.org/10.1115/1.1634282

  18. Böl M, Reese S (2007) A new approach for the simulation of skeletal muscles using the tool of statistical mechanics. Mat.-wiss. u. Werkstofftech. 38(12):955–964. https://doi.org/10.1002/mawe.200700225

  19. Noakes KF, Pullan AJ, Bissett IP et al (2008) Subject specific finite elasticity simulations of the pelvic floor. J Biomech 41(14):3060–3065. https://doi.org/10.1016/j.jbiomech.2008.06.037

    Article  Google Scholar 

  20. Jing D, Ashton-Miller JA, DeLancey JOL (2012) A subject-specific anisotropic viscohyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech 45(3):455–460. https://doi.org/10.1016/j.jbiomech.2011.12.002

    Article  Google Scholar 

  21. Havelková L et al (2016) The effects of fetal head trajectory on stress distribution in levator ani during vaginal delivery. In: Jorge RN et al (eds) BioMedWomen. CRC Press, Boca Raton, pp 189–192

    Google Scholar 

  22. Yan X, Kruger JA, Nielsen PM et al (2015) Effects of fetal head shape variation on the second stage of labour. J Biomech 48(9):1593–1599. https://doi.org/10.1016/j.jbiomech.2015.02.062

    Article  Google Scholar 

  23. Sora MC, Jilavu R, Matusz P (2012) Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations. Surg Radiol Anat 34:731–736. https://doi.org/10.1007/s00276-011-0862-2

    Article  Google Scholar 

  24. Feil P, Sora MC (2014) A 3D reconstruction model of the female pelvic floor by using plastinated cross sections. Austin J Anat 1(5):1022

    Google Scholar 

  25. Bhattarai A, Frotscher R, Sora M-C, Staat M (2014) A 3D finite element model of the female pelvic floor for the reconstruction of the urinary incontinence. In: Oñate E, Oliver J, Huerta A (eds) Proceedings of WCCM XI–ECCM V–ECFD VI, Barcelona, Spain, 20–25 July 2014, pp 923–934. https://doi.org/10.21269/6507

  26. Janda S, van der Helm F, de Blok SB (2003) Measuring morphological parameters of the pelvic floor for finite element modelling purposes. J Biomech 36(6):749–757. https://doi.org/10.1016/S0021-9290(03)00008-3

  27. Pato MPM, Areias P (2010) Active and passive behaviors of soft tissues: pelvic floor muscles. Int J Numer Meth Biomed Eng 26(6):667–680. https://doi.org/10.1002/cnm.1351

  28. Pandy MG, Zajac FE, Sim E et al (1990) An optimal control model for maximum-height human jumping. J Biomech 23(12):1185–1198. https://doi.org/10.1016/0021-9290(90)90376-E

Download references

Acknowledgements

The two first authors have been funded by the German Federal Ministry of Education and Research through the FHprofUnt project “BINGO”, grant number 03FH073PX2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Staat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattarai, A., Frotscher, R., Staat, M. (2018). Computational Analysis of Pelvic Floor Dysfunction. In: Brandão, S., Da Roza, T., Ramos, I., Mascarenhas, T. (eds) Women's Health and Biomechanics. Lecture Notes in Computational Vision and Biomechanics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-71574-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71574-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71573-5

  • Online ISBN: 978-3-319-71574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics