Skip to main content

An Adaptive User Interface Based on Psychological Test and Task-Relevance

  • Conference paper
  • First Online:
Computational Neuroscience (LAWCN 2017)

Abstract

The current advances into Human-Computer Interaction (HCI) are accompanied by the quick growth of Machine Learning (ML) and Artificial Intelligence (AI). It opens countless possibilities to enhance the interaction and communication between the machines and humans. Nevertheless, the human does not process the information at same way of computers (step-by-step); thus, the interfaces must be adequate to human’s capabilities and limitations. The Graphical User Interfaces (GUIs) are the most used way to provide information to the user because the visual information is a straightforward and natural method to interact with the human. A new step forward is integrated some intelligent behavior for adapting the GUIs to the context, user’s necessities and personalization; hence, the Adaptive User Interfaces (AUIs) are a new proposal which integrates intelligent and adaptive capabilities to achieve an enhanced human-computer interface. In this paper, an AUI is proposed based on psychological tests, which are used to assess the cognitive load that interface produces to the user so to know how much information must be shown and thus the user does not undergo overloading. These cognitive data is joined with a relevance weight, which represents what information is necessary to show in a given situation (Task-Relevance), in order to give to the user the most important data with the less cognitive load. The paper’s aim is to show how psychological tests can be used as input information for an adaptive interface; in that sense, each them are explained and a possible user case is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Card, S.K., Newell, A., Moran, T.P.: The Psychology of Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale (1983)

    Google Scholar 

  2. Seow, S.C.: Information theoretic models of HCI: a comparison of the Hick-Hyman law and Fitts’ law. Hum.-Comput. Interact. 20(3), 315–352 (2005)

    Article  Google Scholar 

  3. Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules. Morgan Kaufmann, Boston (2010)

    Google Scholar 

  4. Hall, S.K., Cockerham, K.J., Rhodes, D.J.: Applying human factors in graphical operator interfaces. In: Annual Pulp and Paper Industry Technical Conference, Portland, USA (2001)

    Google Scholar 

  5. Helander, M.: A Guide to Human Factors and Ergonomics. CRC Press Taylor & Francis Group, London (2006)

    Google Scholar 

  6. Cortes, V.A., Zarate, V.H., Ramirez Uresti, J.A., Zayas, B.E.: Current challenges and applications for adaptive user interfaces. In: Human-Computer Interaction, pp. 49–68. InTech (2009)

    Google Scholar 

  7. Rothrock, L., Koubek, R., Fuchs, F., Haas, M., Salvendy, G.: Review and reappraisal of adaptive interfaces: toward biologically inspired paradigms. Theor. Issues Ergon. Sci. 3(1), 47–84 (2002)

    Article  Google Scholar 

  8. Cockburn, A., Gutwin, C., Greenberg, S.: A predictive model of menu performance. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, San Jose, California, USA (2007)

    Google Scholar 

  9. Miniukovich, A., De Angeli, A.: Quantification of interface visual complexity. In: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces - AVI 2014, Como, Italy (2014)

    Google Scholar 

  10. Sweller, J., Ayres, P., Kalyuga, S.: Measuring cognitive load. In: Sweller, J., Ayres, P., Kalyuga, S. (eds.) Cognitive Load Theory, pp. 71–85. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8126-4_6

    Chapter  Google Scholar 

  11. Mezhoundi, N., Khaddam, I., Vanderdonckt, J.: Toward usable intelligent user interface. In: Kurosu, M. (ed.) HCI 2015. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20916-6_43

    Google Scholar 

  12. Zaki, M., Forbrig, P.: Towards the generation of assistive user interfaces for smart meeting rooms based on activity patterns. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds.) AmI 2012. LNCS, vol. 7683, pp. 288–295. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34898-3_19

    Chapter  Google Scholar 

  13. Cerny, T., Chalupa, V., Donahoo, M.: Towards smart user interface design. In: International Conference on Information Science and Applications, Suwon (2012)

    Google Scholar 

  14. Shneiderman, B., Mitchell, J.: Dynamic versus static menus: an exploratory comparison. SIGCHI Bull. 20(4), 33–37 (1989)

    Article  Google Scholar 

  15. Gullà, F., Cavalieri, L., Ceccacci, S., Germani, M., Bevilacqua, R.: Method to design adaptable and adaptive user interfaces: a method to manage the information. In: Stephanidis, C. (ed.) HCI 2015. CCIS, vol. 528, pp. 19–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21380-4_4

    Chapter  Google Scholar 

  16. Kiencke, U., Majjad, R., Kramer, S.: Modeling and performance analysis of a hybrid driver model. Control Eng. Pract. 7, 985–991 (1999)

    Article  Google Scholar 

  17. Zudilova-Seinstra, E.: On the role of individual human abilities in the design of adaptive user interfaces for scientific problem-solving environments. Knowl. Inf. Syst. 13, 243–270 (2007)

    Article  Google Scholar 

  18. Gullà, F., Cavalieri, L., Ceccacci, S., Germani, M.: A BBN-based method to manage adaptive behavior of a smart user interface. Procedia CIRP 50, 535–540 (2016)

    Article  Google Scholar 

  19. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. SMC-13(3), 257–266 (1983)

    Article  Google Scholar 

  20. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity to process information. Psychol. Rev. 63(2), 81–97 (1956)

    Article  Google Scholar 

  21. Aben, B., Stapert, S., Blokland, A.: About the distinction between working memory and short-term memory. Front. Psychol. 3, 301 (2012)

    Article  Google Scholar 

  22. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human-Computer Interaction. Pearson, Harlow (2004)

    MATH  Google Scholar 

  23. Zadeh, L.: Fuzzy logic. Computer 21(4), 83–93 (1988)

    Article  Google Scholar 

  24. Pearl, J.: Probabilistic Reasoning in Expert Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  25. Anderson, E.W., Potter, K.C., Matzen, L.E., Shepherd, J.F., Preston, G.A., Silva, C.T.: A user study of visualization effectiveness using EEG and cognitive load. Comput. Graph. Forum 30(3), 791–800 (2011)

    Article  Google Scholar 

  26. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999)

    Article  Google Scholar 

  27. Naveen, K., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Comput. Sci. 84(1), 70–78 (2016)

    Google Scholar 

  28. Majaranta, P., Bulling, A.: Eye tracking and eye-based human-computer interaction. In: Fairclough, S.H., Gilleade, K. (eds.) Advances in Physiological Computing. HIS, pp. 39–65. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6392-3_3

    Chapter  Google Scholar 

  29. Flad, N., Fomina, T., Buelthoff, H.H., Chuang, L.L.: Unsupervised clustering of EOG as a viable substitute for optical eye tracking. In: Burch, M., Chuang, L., Fisher, B., Schmidt, A., Weiskopf, D. (eds.) ETVIS 2015. MV, pp. 151–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47024-5_9

    Chapter  Google Scholar 

  30. Chen, S., Epps, J., Chen, F.: Automatic and continuous user task analysis via eye activity. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, Santa Monica (2013)

    Google Scholar 

  31. Chen, L., Pu, P.: Eye-tracking study of user behavior in recommender interfaces. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 375–380. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_35

    Chapter  Google Scholar 

  32. Plöchl, M., Ossandón, J., König, P.: Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front. Hum. Neurosci. 6, 278 (2012)

    Article  Google Scholar 

  33. Flad, N., Bulthoff, H., Chuang, L.: Combined use of eye-tracking and EEG to understand visual information processing. In: International Summer School on Visual Computing (VCSS 2015), Stuttgart (2015)

    Google Scholar 

  34. Peysakhovich, V., Dehais, F., Causse, M.: Pupil diameter as a measure of cognitive load during auditory-visual interference in a simple piloting task. Procedia Manuf. 3, 5199–5205 (2015)

    Article  Google Scholar 

  35. Wong, H., Epps, J.: Pupillary transient responses to within-tasks cognitive load variation. Comput. Methods Programs Biomed. 137, 47–63 (2016)

    Article  Google Scholar 

  36. Critchley, H., Nagai, Y.: Electrodermal activity (EDA). In: Gellman, M.D., Rick Turner, J. (eds.) Encyclopedia of Behavioral Medicine, pp. 666–669. Springer, New York (2013)

    Google Scholar 

  37. Setz, C., Arnrich, B., Schumm, J., La Marca, R., Troster, G., Ehlert, U.: Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 14(2), 410–417 (2010)

    Article  Google Scholar 

  38. Nourbakhsh, N., Wang, Y., Chen, F., Calvo, R.A.: Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In: Proceedings of the 24th Australian Computer-Human Interaction Conference, Melbourne (2012)

    Google Scholar 

  39. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)

    Article  Google Scholar 

  40. Hart, G.S.: NASA-task load index (NASA-TLX); 20 years later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 50(9), 904–908 (2006)

    Article  Google Scholar 

  41. Fairclough, S.H., Moores, L.J., Ewing, K.C., Roberts, J.: Measuring task engagement as an input to physiological computing. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, Amsterdam (2009)

    Google Scholar 

  42. Jiao, X., Bai, J., Chen, S., Li, Q.: Development of physical workload measuring system based on multi-physiological signals from human-machine interaction. In: Proceedings of IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurement Systems, VECIMS (2012)

    Google Scholar 

  43. Parchment, A., Wohleber, R.W., Reinerman-Jones, L.: Psychophysiological baseline methods and usage. In: Schmorrow, D.D.D., Fidopiastis, C.M.M. (eds.) AC 2016. LNCS, vol. 9743, pp. 361–371. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39955-3_34

    Google Scholar 

  44. Ziegler, M.D., Kraft, A., Krein, M., Lo, L.-C., Hatfield, B., Casebeer, W., Russell, B.: Sensing and assessing cognitive workload across multiple tasks. In: Schmorrow, D.D.D., Fidopiastis, C.M.M. (eds.) AC 2016. LNCS, vol. 9743, pp. 440–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39955-3_41

    Google Scholar 

Download references

Acknowledgement

Jaime A. Riascos is supported by a master degree studentship from FAURGS/Petrobras, research project 8147-7. The first author would like to thanks to Prof. Dr. Lewis Chuang for hosting him in his Lab and provide him a theoretical discussion about the subject of this paper. That internship was done by funding provided by the SFB TRR-161 (Work package C03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Riascos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riascos, J.A., Nedel, L.P., Barone, D.C. (2017). An Adaptive User Interface Based on Psychological Test and Task-Relevance. In: Barone, D., Teles, E., Brackmann, C. (eds) Computational Neuroscience. LAWCN 2017. Communications in Computer and Information Science, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-71011-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71011-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71010-5

  • Online ISBN: 978-3-319-71011-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics